本来想用回溯法实现 算24点。题目都拟好了,就是《python 回溯法 子集树模板 系列 —— 7、24点》。无奈想了一天,没有头绪。只好改用暴力穷举法。

思路说明

根据四个数,三个运算符,构造三种中缀表达式,遍历,计算每一种可能

显然可能的形式不止三种。但是,其它的形式要么得不到24点,要么在加、乘意义下可以转化为这三种形式的表达式!

使用内置的eval函数计算中缀表达式,使得代码变得非常简洁!

完整代码

# 作者:hhh5460
# 时间:2017年6月3日 import itertools def twentyfour(cards):
'''史上最短计算24点代码'''
for nums in itertools.permutations(cards): # 四个数
for ops in itertools.product('+-*/', repeat=3): # 三个运算符(可重复!)
# 构造三种中缀表达式 (bsd)
bds1 = '({0}{4}{1}){5}({2}{6}{3})'.format(*nums, *ops) # (a+b)*(c-d)
bds2 = '(({0}{4}{1}){5}{2}){6}{3}'.format(*nums, *ops) # (a+b)*c-d
bds3 = '{0}{4}({1}{5}({2}{6}{3}))'.format(*nums, *ops) # a/(b-(c/d)) for bds in [bds1, bds2, bds3]: # 遍历
try:
if abs(eval(bds) - 24.0) < 1e-10: # eval函数
return bds
except ZeroDivisionError: # 零除错误!
continue return 'Not found!' # 测试
# 数据来源:http://www.cnblogs.com/grenet/archive/2013/02/28/2936965.html
cards =[[1,1,1,8],
[1,1,2,6],
[1,1,2,7],
[1,1,2,8],
[1,1,2,9],
[1,1,2,10],
[1,1,3,4],
[1,1,3,5],
[1,1,3,6],
[1,1,3,7],
[1,1,3,8],
[1,1,3,9],
[1,1,3,10],
[1,1,4,4],
[1,1,4,5],
[1,1,4,6],
[1,1,4,7],
[1,1,4,8],
[1,1,4,9],
[1,1,4,10],
[1,1,5,5],
[1,1,5,6],
[1,1,5,7],
[1,1,5,8],
[1,1,6,6],
[1,1,6,8],
[1,1,6,9],
[1,1,7,10],
[1,1,8,8],
[1,2,2,4],
[1,2,2,5],
[1,2,2,6],
[1,2,2,7],
[1,2,2,8],
[1,2,2,9],
[1,2,2,10],
[1,2,3,3],
[1,2,3,4],
[1,2,3,5],
[1,2,3,6],
[1,2,3,7],
[1,2,3,8],
[1,2,3,9],
[1,2,3,10],
[1,2,4,4],
[1,2,4,5],
[1,2,4,6],
[1,2,4,7],
[1,2,4,8],
[1,2,4,9],
[1,2,4,10],
[1,2,5,5],
[1,2,5,6],
[1,2,5,7],
[1,2,5,8],
[1,2,5,9],
[1,2,5,10],
[1,2,6,6],
[1,2,6,7],
[1,2,6,8],
[1,2,6,9],
[1,2,6,10],
[1,2,7,7],
[1,2,7,8],
[1,2,7,9],
[1,2,7,10],
[1,2,8,8],
[1,2,8,9],
[1,2,8,10],
[1,3,3,3],
[1,3,3,4],
[1,3,3,5],
[1,3,3,6],
[1,3,3,7],
[1,3,3,8],
[1,3,3,9],
[1,3,3,10],
[1,3,4,4],
[1,3,4,5],
[1,3,4,6],
[1,3,4,7],
[1,3,4,8],
[1,3,4,9],
[1,3,4,10],
[1,3,5,6],
[1,3,5,7],
[1,3,5,8],
[1,3,5,9],
[1,3,5,10],
[1,3,6,6],
[1,3,6,7],
[1,3,6,8],
[1,3,6,9],
[1,3,6,10],
[1,3,7,7],
[1,3,7,8],
[1,3,7,9],
[1,3,7,10],
[1,3,8,8],
[1,3,8,9],
[1,3,8,10],
[1,3,9,9],
[1,3,9,10],
[1,3,10,10],
[1,4,4,4],
[1,4,4,5],
[1,4,4,6],
[1,4,4,7],
[1,4,4,8],
[1,4,4,9],
[1,4,4,10],
[1,4,5,5],
[1,4,5,6],
[1,4,5,7],
[1,4,5,8],
[1,4,5,9],
[1,4,5,10],
[1,4,6,6],
[1,4,6,7],
[1,4,6,8],
[1,4,6,9],
[1,4,6,10],
[1,4,7,7],
[1,4,7,8],
[1,4,7,9],
[1,4,8,8],
[1,4,8,9],
[1,4,9,10],
[1,4,10,10],
[1,5,5,5],
[1,5,5,6],
[1,5,5,9],
[1,5,5,10],
[1,5,6,6],
[1,5,6,7],
[1,5,6,8],
[1,5,6,9],
[1,5,6,10],
[1,5,7,8],
[1,5,7,9],
[1,5,7,10],
[1,5,8,8],
[1,5,8,9],
[1,5,8,10],
[1,5,9,9],
[1,5,9,10],
[1,5,10,10],
[1,6,6,6],
[1,6,6,8],
[1,6,6,9],
[1,6,6,10],
[1,6,7,9],
[1,6,7,10],
[1,6,8,8],
[1,6,8,9],
[1,6,8,10],
[1,6,9,9],
[1,6,9,10],
[1,7,7,9],
[1,7,7,10],
[1,7,8,8],
[1,7,8,9],
[1,7,8,10],
[1,7,9,9],
[1,7,9,10],
[1,8,8,8],
[1,8,8,9],
[1,8,8,10],
[2,2,2,3],
[2,2,2,4],
[2,2,2,5],
[2,2,2,7],
[2,2,2,8],
[2,2,2,9],
[2,2,2,10],
[2,2,3,3],
[2,2,3,4],
[2,2,3,5],
[2,2,3,6],
[2,2,3,7],
[2,2,3,8],
[2,2,3,9],
[2,2,3,10],
[2,2,4,4],
[2,2,4,5],
[2,2,4,6],
[2,2,4,7],
[2,2,4,8],
[2,2,4,9],
[2,2,4,10],
[2,2,5,5],
[2,2,5,6],
[2,2,5,7],
[2,2,5,8],
[2,2,5,9],
[2,2,5,10],
[2,2,6,6],
[2,2,6,7],
[2,2,6,8],
[2,2,6,9],
[2,2,6,10],
[2,2,7,7],
[2,2,7,8],
[2,2,7,10],
[2,2,8,8],
[2,2,8,9],
[2,2,8,10],
[2,2,9,10],
[2,2,10,10],
[2,3,3,3],
[2,3,3,5],
[2,3,3,6],
[2,3,3,7],
[2,3,3,8],
[2,3,3,9],
[2,3,3,10],
[2,3,4,4],
[2,3,4,5],
[2,3,4,6],
[2,3,4,7],
[2,3,4,8],
[2,3,4,9],
[2,3,4,10],
[2,3,5,5],
[2,3,5,6],
[2,3,5,7],
[2,3,5,8],
[2,3,5,9],
[2,3,5,10],
[2,3,6,6],
[2,3,6,7],
[2,3,6,8],
[2,3,6,9],
[2,3,6,10],
[2,3,7,7],
[2,3,7,8],
[2,3,7,9],
[2,3,7,10],
[2,3,8,8],
[2,3,8,9],
[2,3,8,10],
[2,3,9,9],
[2,3,9,10],
[2,3,10,10],
[2,4,4,4],
[2,4,4,5],
[2,4,4,6],
[2,4,4,7],
[2,4,4,8],
[2,4,4,9],
[2,4,4,10],
[2,4,5,5],
[2,4,5,6],
[2,4,5,7],
[2,4,5,8],
[2,4,5,9],
[2,4,5,10],
[2,4,6,6],
[2,4,6,7],
[2,4,6,8],
[2,4,6,9],
[2,4,6,10],
[2,4,7,7],
[2,4,7,8],
[2,4,7,9],
[2,4,7,10],
[2,4,8,8],
[2,4,8,9],
[2,4,8,10],
[2,4,9,9],
[2,4,9,10],
[2,4,10,10],
[2,5,5,7],
[2,5,5,8],
[2,5,5,9],
[2,5,5,10],
[2,5,6,6],
[2,5,6,7],
[2,5,6,8],
[2,5,6,9],
[2,5,6,10],
[2,5,7,7],
[2,5,7,8],
[2,5,7,9],
[2,5,7,10],
[2,5,8,8],
[2,5,8,9],
[2,5,8,10],
[2,5,9,10],
[2,5,10,10],
[2,6,6,6],
[2,6,6,7],
[2,6,6,8],
[2,6,6,9],
[2,6,6,10],
[2,6,7,8],
[2,6,7,9],
[2,6,7,10],
[2,6,8,8],
[2,6,8,9],
[2,6,8,10],
[2,6,9,9],
[2,6,9,10],
[2,6,10,10],
[2,7,7,8],
[2,7,7,10],
[2,7,8,8],
[2,7,8,9],
[2,7,9,10],
[2,7,10,10],
[2,8,8,8],
[2,8,8,9],
[2,8,8,10],
[2,8,9,9],
[2,8,9,10],
[2,8,10,10],
[2,9,10,10],
[3,3,3,3],
[3,3,3,4],
[3,3,3,5],
[3,3,3,6],
[3,3,3,7],
[3,3,3,8],
[3,3,3,9],
[3,3,3,10],
[3,3,4,4],
[3,3,4,5],
[3,3,4,6],
[3,3,4,7],
[3,3,4,8],
[3,3,4,9],
[3,3,5,5],
[3,3,5,6],
[3,3,5,7],
[3,3,5,9],
[3,3,5,10],
[3,3,6,6],
[3,3,6,7],
[3,3,6,8],
[3,3,6,9],
[3,3,6,10],
[3,3,7,7],
[3,3,7,8],
[3,3,7,9],
[3,3,8,8],
[3,3,8,9],
[3,3,8,10],
[3,3,9,9],
[3,3,9,10],
[3,4,4,4],
[3,4,4,5],
[3,4,4,6],
[3,4,4,7],
[3,4,4,8],
[3,4,4,9],
[3,4,4,10],
[3,4,5,5],
[3,4,5,6],
[3,4,5,7],
[3,4,5,8],
[3,4,5,9],
[3,4,5,10],
[3,4,6,6],
[3,4,6,8],
[3,4,6,9],
[3,4,6,10],
[3,4,7,7],
[3,4,7,8],
[3,4,7,9],
[3,4,7,10],
[3,4,8,9],
[3,4,8,10],
[3,4,9,9],
[3,4,10,10],
[3,5,5,6],
[3,5,5,7],
[3,5,5,8],
[3,5,5,9],
[3,5,6,6],
[3,5,6,7],
[3,5,6,8],
[3,5,6,9],
[3,5,6,10],
[3,5,7,8],
[3,5,7,9],
[3,5,7,10],
[3,5,8,8],
[3,5,8,9],
[3,5,9,9],
[3,5,9,10],
[3,5,10,10],
[3,6,6,6],
[3,6,6,7],
[3,6,6,8],
[3,6,6,9],
[3,6,6,10],
[3,6,7,7],
[3,6,7,8],
[3,6,7,9],
[3,6,7,10],
[3,6,8,8],
[3,6,8,9],
[3,6,8,10],
[3,6,9,9],
[3,6,9,10],
[3,6,10,10],
[3,7,7,7],
[3,7,7,8],
[3,7,7,9],
[3,7,7,10],
[3,7,8,8],
[3,7,8,9],
[3,7,9,9],
[3,7,9,10],
[3,7,10,10],
[3,8,8,8],
[3,8,8,9],
[3,8,8,10],
[3,8,9,9],
[3,8,9,10],
[3,8,10,10],
[3,9,9,9],
[3,9,9,10],
[3,9,10,10],
[4,4,4,4],
[4,4,4,5],
[4,4,4,6],
[4,4,4,7],
[4,4,4,8],
[4,4,4,9],
[4,4,4,10],
[4,4,5,5],
[4,4,5,6],
[4,4,5,7],
[4,4,5,8],
[4,4,5,10],
[4,4,6,8],
[4,4,6,9],
[4,4,6,10],
[4,4,7,7],
[4,4,7,8],
[4,4,7,9],
[4,4,7,10],
[4,4,8,8],
[4,4,8,9],
[4,4,8,10],
[4,4,10,10],
[4,5,5,5],
[4,5,5,6],
[4,5,5,7],
[4,5,5,8],
[4,5,5,9],
[4,5,5,10],
[4,5,6,6],
[4,5,6,7],
[4,5,6,8],
[4,5,6,9],
[4,5,6,10],
[4,5,7,7],
[4,5,7,8],
[4,5,7,9],
[4,5,7,10],
[4,5,8,8],
[4,5,8,9],
[4,5,8,10],
[4,5,9,9],
[4,5,9,10],
[4,5,10,10],
[4,6,6,6],
[4,6,6,7],
[4,6,6,8],
[4,6,6,9],
[4,6,6,10],
[4,6,7,7],
[4,6,7,8],
[4,6,7,9],
[4,6,7,10],
[4,6,8,8],
[4,6,8,9],
[4,6,8,10],
[4,6,9,9],
[4,6,9,10],
[4,6,10,10],
[4,7,7,7],
[4,7,7,8],
[4,7,8,8],
[4,7,8,9],
[4,7,8,10],
[4,7,9,9],
[4,7,9,10],
[4,7,10,10],
[4,8,8,8],
[4,8,8,9],
[4,8,8,10],
[4,8,9,9],
[4,8,9,10],
[4,8,10,10],
[4,9,9,10],
[5,5,5,5],
[5,5,5,6],
[5,5,5,9],
[5,5,6,6],
[5,5,6,7],
[5,5,6,8],
[5,5,7,7],
[5,5,7,8],
[5,5,7,10],
[5,5,8,8],
[5,5,8,9],
[5,5,8,10],
[5,5,9,9],
[5,5,9,10],
[5,5,10,10],
[5,6,6,6],
[5,6,6,7],
[5,6,6,8],
[5,6,6,9],
[5,6,6,10],
[5,6,7,7],
[5,6,7,8],
[5,6,7,9],
[5,6,8,8],
[5,6,8,9],
[5,6,8,10],
[5,6,9,9],
[5,6,9,10],
[5,6,10,10],
[5,7,7,9],
[5,7,7,10],
[5,7,8,8],
[5,7,8,9],
[5,7,8,10],
[5,7,9,10],
[5,7,10,10],
[5,8,8,8],
[5,8,8,9],
[5,8,8,10],
[5,9,10,10],
[6,6,6,6],
[6,6,6,8],
[6,6,6,9],
[6,6,6,10],
[6,6,7,9],
[6,6,7,10],
[6,6,8,8],
[6,6,8,9],
[6,6,8,10],
[6,6,9,10],
[6,7,7,10],
[6,7,8,9],
[6,7,8,10],
[6,7,9,9],
[6,7,10,10],
[6,8,8,8],
[6,8,8,9],
[6,8,8,10],
[6,8,9,9],
[6,8,9,10],
[6,9,9,10],
[6,10,10,10],
[7,7,9,10],
[7,8,8,9],
[7,8,8,10],
[7,8,9,10],
[7,8,10,10],
[8,8,8,10]] for card in cards:
print(twentyfour(card))

以上数据全都pass,图我就不截了

python 穷举法 算24点(史上最简短代码)的更多相关文章

  1. python穷举法解数独

    总体思路 : 数独九行九列,一个list装一行,也就需要一个嵌套两层的list 初始会有很多数字,我可不想一个一个赋值 那就要想办法偷懒啦 然后再是穷举,如何科学的穷举 第一部分:录入 某在线数独网站 ...

  2. C#4 for循环 迭代法 穷举法应用

    for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...

  3. C# for 循环 迭代法 穷举法

    for()循环. 四要素: 初始条件,循环条件,状态改变,循环体. 执行过程: 初始条件--循环条件--循环体--状态改变--循环条件.... 注意:for的小括号里面分号隔开,for的小括号后不要加 ...

  4. 穷举法、for循环、函数、作用域、斐波那契数

    1.穷举法 枚举所有可能性,直到得到正确的答案或者尝试完所有值. 穷举法经常是解决问题的最实用的方法,它实现起来热别容易,并且易于理解. 2.for循环 for语句一般形式如下: for variab ...

  5. 作业:for循环,迭代法和穷举法

                                                    for()循环 四要素:初始条件,循环条件,状态改变,循环体. 执行过程:初始条件--循环条件--循环体 ...

  6. for循环语句以及迭代法和穷举法

    循环语句: 四要素:初始条件,循环条件,状态改变,循环体 for(初始条件;循环条件;状态改变){ //循环体} 案例1:打印等腰直角三角形和菱形 左上三角 static void Main(stri ...

  7. 【2-24】for循环嵌套,跳转语句,异常语句,穷举法、迭代法

    For循环嵌套与if嵌套相似,是在for中再套for,其结构如下: For(;;) { For(;;){} }经典题型为打印星星例: Console.Write("请输入一个奇数:" ...

  8. C# 异常语句 跳转语句 while循环 穷举法 迭代法

    一  异常语句   ♦ try.....catch....finally 结构形式 try{ 可能会出错的代码语句 如果这里出错了,那么不会在继续下面的代码,而是直接进入catch中处理异常}catc ...

  9. 基本算法思想之穷举法(C++语言描述)

    穷举算法(Exhaustive Attack method)是最简单的一种算法,其依赖于计算机的强大计算能力来穷尽每一种可能性,从而达到求解问题的目的.穷举算法效率不高,但是适应于一些没有规律可循的场 ...

随机推荐

  1. 用例设计之API用例覆盖准则

    基本原则 本文主要讨论API测试的用例/场景覆盖,基本原则如下: 用户场景闭环(从哪来到哪去) 遍历所有的实现逻辑路径 需求点覆盖 覆盖维度 API协议(参数&业务场景) 中间件检查 异常场景 ...

  2. SerialPort类的用法与示例

    转:https://www.cnblogs.com/hwBeta/p/6926363.html Microsoft .Net框架SerialPort类的用法与示例 从Microsoft .Net 2. ...

  3. python基础一数据类型之字符串

    摘要: python基础一中有字符串,所以这篇主要讲字符串. 一,字符串的注释 二,字符串的索引与切片 三,字符串的方法 一,字符串的注释 单引号 双引号 三引号都可以用户定义字符串.三引号不仅可以定 ...

  4. phpstudy绑定项目(dist文件)域名--陈远波

    该篇博客是针对已经打包好的dist文件用phpstudy工具进行域名绑定,dist文件生成在这笔者不进行描述,绑定步骤如下: 一:官网下载phpstudy软件进行安装:http://phpstudy. ...

  5. CSS中如何选择ul下li的奇数、偶数行

    <style> #Ulist li:nth-of-type(odd){ margin-left: 20px;}奇数行 #Ulist li:nth-of-type(even){margin- ...

  6. python第二十九课——文件读写(readline()和readlines()的使用)

    演示readline()和readlines()的使用: #1.打开文件 f3=open(r'a.txt','r',encoding='gbk') #2.读取数据 content3=f3.readli ...

  7. CF700E:Cool Slogans(SAM,线段树合并)

    Description 给你一个字符串,如果一个串包含两个可有交集的相同子串,那么这个串的价值就是子串的价值+1.问你给定字符串的最大价值子串的价值. Input 第一行读入字符串长度$n$,第二行是 ...

  8. 有crontab中的脚本不执行,需要在脚本里面export各种环境变量

    [oracle@sta ~]$ vi .bash_profile # .bash_profile # Get the aliases and functionsif [ -f ~/.bashrc ]; ...

  9. 1、pyspider安装

    系统环境: centos6.6.python2.7 经测试,python2.6安装的pyspider会导致webui无法正常访问 参考博文: http://cuiqingcai.com/2443.ht ...

  10. Windows/Linux获取当前运行程序的绝对路径

    windows 获取当前运行程序的绝对路径(.exe) GetModuleFileNameA()函数获取绝对路径,不过文件路径中的反斜杠需要进行替换. ]; GetModuleFileNameA(NU ...