最近在研究xgboost,把一些xgboost的知识总结一下。这里只是把相关资源作总结,原创的东西不多。

原理

xgboost的原理首先看xgboost的作者陈天奇的ppt

英文不太好的同学可以看看这篇博客xgboost原理。假如看了陈天奇的ppt还晕乎的同学,看了这篇应该能大概知道xgboost是如何求最优解的。

实战

xgboost的参数多的简直不像话。上面提到的博客里xgboost原理提供了3篇介绍调参思路的博客。其中作者推荐的老外的那篇有个翻译好的中文博客XGBoost参数调优完全指南(附Python代码)。我在这里强烈推荐。附上python的api地址。

常见问题

机器学习算法中GBDT和XGBOOST的区别有哪些?

这个问题的答案来自知乎机器学习算法中GBDT和XGBOOST的区别有哪些的wepon的回答。

  • 传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。
  • 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。
  • xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。从Bias-variance tradeoff角度来讲,正则项降低了模型的variance,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。
  • Shrinkage(缩减),相当于学习速率(xgboost中的eta)。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了削弱每棵树的影响,让后面有更大的学习空间。实际应用中,一般把eta设置得小一点,然后迭代次数设置得大一点。(补充:传统GBDT的实现也有学习速率)
  • 列抽样(column subsampling)。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。
  • 对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出它的分裂方向。
  • xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完才能进行下一次迭代的(第t次迭代的代价函数里包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量。这个block结构也使得并行成为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。
  • 可并行的近似直方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点。

xgboost学习与总结的更多相关文章

  1. 【新人赛】阿里云恶意程序检测 -- 实践记录11.10 - XGBoost学习 / 代码阅读、调参经验总结

    XGBoost学习: 集成学习将多个弱学习器结合起来,优势互补,可以达到强学习器的效果.要想得到最好的集成效果,这些弱学习器应当"好而不同". 根据个体学习器的生成方法,集成学习方 ...

  2. XGboost学习总结

    XGboost,全称Extrem Gradient boost,极度梯度提升,是陈天奇大牛在GBDT等传统Boosting算法的基础上重新优化形成的,是Kaggle竞赛的必杀神器. XGboost属于 ...

  3. xgboost学习

    1.原理 https://www.cnblogs.com/zhouxiaohui888/p/6008368.html 2.实战 xgboost中比较重要的参数介绍: (1)学习率:learning r ...

  4. 数据竞赛利器 —— xgboost 学习清单

    1. 入门大全 xgboost 作者给出的一份完备的使用 xgboost 进行数据分析的完整示例代码:A walk through python example for UCI Mushroom da ...

  5. XGBoost学习笔记2

    XGBoost API 参数 分类问题 使用逻辑回归 # Import xgboost import xgboost as xgb # Create arrays for the features a ...

  6. XGBoost学习笔记1

    XGBoost XGBoost这个网红大杀器,似乎很好用,完事儿还是自己推导一遍吧,datacamp上面有辅助的课程,但是不太涉及原理 它究竟有多好用呢?我还没用过,先搞清楚原理,hahaha~ 参考 ...

  7. 【Python机器学习实战】决策树与集成学习(七)——集成学习(5)XGBoost实例及调参

    上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使 ...

  8. xgboost原理及应用

    1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT 地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboo ...

  9. xgboost原理及应用--转

    1.背景 关于xgboost的原理网络上的资源很少,大多数还停留在应用层面,本文通过学习陈天奇博士的PPT地址和xgboost导读和实战 地址,希望对xgboost原理进行深入理解. 2.xgboos ...

随机推荐

  1. python实现简单的负载均衡

    提到分发请求,相信大多数人首先会想到Nginx,Nginx作为一种多功能服务器,不仅提供了反向代理隐藏主机ip的能力,还拥有简单的缓存加速功能.当然Nginx最强大的功能还是分发请求,不仅提供了哈希, ...

  2. Linux简单使用

    1.基本命令 创建目录pathA:mkdir pathA 进入目录pathA:cd pathA 查看目录内容:ls 查看目录下文件的详细信息:ls -l,也可以是:ll(l是小写的L,别看错了) 拷贝 ...

  3. JavaScript动画:offset和匀速动画详解(含轮播图的实现)

    本文最初发表于博客园,并在GitHub上持续更新前端的系列文章.欢迎在GitHub上关注我,一起入门和进阶前端. 以下是正文. offset简介 我们知道,三大家族包括:offset/scroll/c ...

  4. SQL Server中ORDER BY后面可以是表达式和子查询

    假如SQL Server数据库中现在有Book表如下 CREATE TABLE [dbo].[Book]( ,) NOT NULL, ) NULL, ) NULL, ) NULL, [CreateTi ...

  5. C# 实现 JAVA AES加密解密[原创]

    以下是网上普遍能收到的JAVA AES加密解密方法. 因为里面用到了KeyGenerator 和 SecureRandom,但是.NET 里面没有这2个类.无法使用安全随机数生成KEY. 我们在接收J ...

  6. [Python_4] Python 面向对象(OOP)

    0. 说明 Python 面向对象(OOP) 笔记.迭代磁盘文件.析构函数.内置方法.多重继承.异常处理 参考 Python面向对象 1. 面向对象 # -*-coding:utf-8-*- &quo ...

  7. String真的是不可变的吗?

    你可能问一个人String是可变的吗?想必他们都会一口同生的说String是不可变的,因为String是final修饰的,而且它底层的是final修饰的char[]数组. 可以看到String源码: ...

  8. 打开word文档时提示“Microsoft Office Word已停止工作”

    我的电脑(Win10)有Office 2003和2013两个版本,可能由于之前超长待机等原因导致word 2003的文件(.doc)不能正常打开,没次都会提示“Microsoft Office Wor ...

  9. [CQOI2009]叶子的染色

    传送门:https://www.luogu.org/problemnew/show/P3155 一道挺水的树形dp题,然后我因为一个挺智障的问题debug了一晚上…… 嗯……首先想,如果一个点的颜色和 ...

  10. Metabase在Windows下的开发环境配置

    Metabase在Windows下的开发环境配置 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} Metabase在Wind ...