Description

有向图 G有n个顶点 1,  2, …,  n,点i 的权值为 w(i)。现在有一只蚂蚁,从给定的起点 v0出发,沿着图 G 的边爬行。开始时,它的体力为 1。每爬过一条边,它的体力都会下降为原来的 ρ 倍,其中ρ 是一个给定的小于1的正常数。而蚂蚁爬到某个顶点时的幸福度,是它当时的体力与该点权值的乘积。 我们把蚂蚁在爬行路径上幸福度的总和记为 H。很显然,对于不同的爬行路径,H 的值也可能不同。小 Z 对 H 值的最大可能值很感兴趣,你能帮助他计算吗?注意,蚂蚁爬行的路径长度可能是无穷的。

Input

每一行中两个数之间用一个空格隔开。
输入文件第一行包含两个正整数 n,  m,分别表示 G 中顶点的个数和边的条数。
第二行包含 n个非负实数,依次表示 n个顶点权值 w(1), w(2), …, w(n)。
第三行包含一个正整数 v0,表示给定的起点。
第四行包含一个实数 ρ,表示给定的小于 1的正常数。
接下来 m行,每行两个正整数 x, y,表示<x, y>是G的一条有向边。可能有自环,但不会有重边。

Output

仅包含一个实数,即 H值的最大可能值,四舍五入到小数点后一位。

Sample Input

5 5
10.0 8.0 8.0 8.0 15.0
1
0.5
1 2
2 3
3 4
4 2
4 5

Sample Output

18.0

HINT

对于 100%的数据, n ≤ 100, m ≤ 1000, ρ ≤ 1 – 10^-6, w(i) ≤ 100 (i = 1, 2, …, n)。

Solution

显然你跑的足够多的话是可以把解跑到需求的精度范围内的……

设$f[t][i][j]$表示⾛$2^t$步,从$i$⾛到$j$获得的最⼤幸福度。

$f[t][i][j]=max(f[t-1][i][k]+f[t-1][k][j]*p^{2^{t-1}})$。

真正写的时候$t$那一维其实并不需要可以滚动数组直接滚掉……

还有记得注意一下初始化一定要对。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (109)
using namespace std; int n,m,v0,u,v;
double ans,p,w[N],f[N][N],g[N][N]; int main()
{
memset(f,0xfe,sizeof(f));
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
scanf("%lf",&w[i]), f[i][i]=;
scanf("%d%lf",&v0,&p);
for (int i=; i<=m; ++i)
scanf("%d%d",&u,&v), f[u][v]=w[v]*p;
while (p>=1e-)
{
memset(g,0xfe,sizeof(g));
for (int k=; k<=n; ++k)
for (int i=; i<=n; ++i)
for (int j=; j<=n; ++j)
g[i][j]=max(g[i][j],f[i][k]+p*f[k][j]);
memcpy(f,g,sizeof(g)); p*=p;
}
for (int i=; i<=n; ++i)
ans=max(ans,f[v0][i]);
printf("%.1lf\n",ans+w[v0]);
}

BZOJ2306:[CTSC2011]幸福路径(倍增Floyd)的更多相关文章

  1. bzoj2306 [Ctsc2011]幸福路径 倍增 Floyd

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=2306 题解 倍增 Floyd. 令 \(f[i][j][k]\) 表示走了 \(2^i\) 步 ...

  2. 【bzoj2306】[Ctsc2011]幸福路径 倍增Floyd

    题目描述 一张n个点的有向图,每个点有一个权值.一开始从点$v_0$出发沿图中的边任意移动,移动到路径上的第$i$个点 输入 每一行中两个数之间用一个空格隔开. 输入文件第一行包含两个正整数 n,  ...

  3. BZOJ2306 [Ctsc2011]幸福路径[倍增]

    这个有环的情况非常的讨厌,一开始想通过数学推等比数列的和,但是发现比较繁就不做了. 然后挖掘这题性质. 数据比较小,但是体力可以很接近1(恼怒),也就是说可能可以跳很多很多步.算了一下,大概跳了2e7 ...

  4. BZOJ2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  5. 【BZOJ 2306】 2306: [Ctsc2011]幸福路径 (倍增floyd)

    2306: [Ctsc2011]幸福路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 437 Description 有向 ...

  6. 【BZOJ2306】幸福路径(动态规划,倍增)

    [BZOJ2306]幸福路径(动态规划,倍增) 题面 BZOJ 题解 不要求确切的值,只需要逼近 显然可以通过移动\(\infty\)步来达到逼近的效果 考虑每次的一步怎么移动 设\(f[i][j]\ ...

  7. [CTSC2011]幸福路径

    题目描述 有向图 G有n个顶点 1, 2, …, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它的体力都会下降 ...

  8. BZOJ 2306: [Ctsc2011]幸福路径

    Description 有向图 G有n个顶点 1, 2, -, n,点i 的权值为 w(i).现在有一只蚂蚁,从 给定的起点 v0出发,沿着图 G 的边爬行.开始时,它的体力为 1.每爬过一条 边,它 ...

  9. bzoj2165: 大楼(倍增floyd)

    题目大意:一个有向图,n(<=100)个点求一条长度>=m(<=10^18)的路径最少经过几条边. 一开始以为是矩乘,蓝鹅当时还没开始写,所以好像给CYC安利错了嘿嘿嘿QWQ 第一眼 ...

随机推荐

  1. Sql Server 与 MySql 在使用 update inner join 时的区别

    Sql Server -- 不使用别名 UPDATE tb_User SET tb_User.pass = '' FROM tb_User usr INNER JOIN tb_Address addr ...

  2. Java - "JUC" CountDownLatch源码分析

    Java多线程系列--“JUC锁”09之 CountDownLatch原理和示例 CountDownLatch简介 CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前 ...

  3. python匿名函数lambda与switch的实现

    1,lambda的语法跟es6的箭头函数差不多 >>> show=lambda x,y: x * y >>> show( 10, 20 ) 200 2,递归求阶乘 ...

  4. 【 js 性能优化】【源码学习】underscore throttle 与 debounce 节流

    在看 underscore.js 源码的时候,接触到了这样两个方法,很有意思: 我先把实现的代码撂在下面,看不懂的可以先跳过,但是跳过可不是永远跳过哦- 一个是 throttle: _.throttl ...

  5. 函数表达式(JavaScript高程笔记)

    函数声明 特点:函数声明提升(执行代码之前解析器会先读取函数声明,并使其在执行任何代码之前可用,意味着可以把函数声明放在调用语句之后) function functionName(arg0,arg1) ...

  6. javascript原型对象与原型链

    在javascript中,当系统加载构造函授后 ,会自动在内存中增加一个对象,这个对象就是原型对象.构造函数和原型对象在内存中表现为相互独立,但两者之间还存在联系,构造函数的prototype是原型对 ...

  7. Webpack 常用命令总结以及常用打包压缩方法

    前言:Webpack是一款基于node的前端打包工具,它可以将很多静态文件打包起来,自动处理依赖关系后,生成一个.js文件,然后让html来引用,不仅可以做到按需加载,而且可以减少HTTP请求,节约带 ...

  8. HBase的写事务,MVCC及新的写线程模型

    MVCC是实现高性能数据库的关键技术,主要为了读不影响写.几乎所有数据库系统都用这技术,比如Spanner,看这里.Percolator,看这里.当然还有mysql.本文说HBase的MVCC和0.9 ...

  9. docker基础:dockerfile的介绍

    Dockerfile 是一个文本格式的配置文件,用户可以使用 Dockerfile 快速创建自定义的镜像.我们会先介绍 Dockerfile 的基本结构及其支持的众多指令,并具体讲解通过执行指令来编写 ...

  10. shell脚本常用技巧

    shell脚本常用技巧 1.获取随机字符串或数字 ~]#echo $RANDOM | md5sum | cut -c 1-6 ~]#openssl rand -base64 4 | cut -c 1- ...