题目大意: 给定一个长度不超过10^5的字符串(小写英文字母),和不超过5000个操作。

每个操作 L R K 表示给区间[L,R]的字符串排序,K=1为升序,K=0为降序。

最后输出最终的字符串

首先这么想想,对于一段区间的排序,排完序的样子和排序之前每个字母的位置并没有关系,而是和每一个字母出现的次数有关。所以我们对于每一次操作,统计出区间中每一个字母出现了多少次,然后按字典序排序就行。更确切的说,就是这个区间中的哪一个部分都改成某一个字母,区间修改。

既然是区间修改,那么就可以用线段树实现。不过这样的话,打lazy标记就显得不是很方便。为此,我们可以开26个线段树,每一个字母开一个长度为n的权值线段树,如果第i为是这个字母,我们就把这一位改成1,然后统计区间中这个字母有多少个,就相当于求区间和了。至于修改,那就是将这个字母所在线段树的区间全都改成1.然后把操作区间的别的地方改成0即可。

举个栗子:

acbcaab

然后将[1, 6]按升序排序。

那么我们首先分别在a, b, c所在的线段树上查到了[1, 6]的区间和,即统计出了每个字母的出现次数。

然后排序的时候,对于a所在的线段树,我们将[1, 3]都改成了1,[4, 6]改成了0;对于b所在线段树,我们将[4, 4]改成了1,[1, 3]和[5, 6]改成了0;对于c,我们将[5, 6]改成了1,[1, 4]改成了0.

这样这个区间就排完序了。

那么怎么输出最终答案呢?

只要对于每一位,暴力的从0到26循环,看哪个字母在这一位上是1,就说明这一位是这个字母了。

配合break,时间复杂度最坏为O(nlogn * 26)

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter printf("\n")
#define space printf(" ")
#define Mem(a) memset(a, 0, sizeof(a))
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-;
const int maxn = 2e7 + ;
inline int read()
{
int ans = ;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) {last = ch; ch = getchar();}
while(isdigit(ch))
{
ans = ans * + ch - ''; ch = getchar();
}
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < ) x = -x, putchar('-');
if(x >= ) write(x / );
putchar('' + x % );
} int n, q;
char s[]; int cnt = , root[], lson[maxn], rson[maxn], l[maxn], r[maxn];
//lson[now]和rson[now]分别记录now的左右儿子的编号,代替了now << 1和 now <<1 | 1
int sum[maxn], lazy[maxn];
void build(int& now, int L, int R) //我这个写法是先吧所有点开好了,不是动态开点(竟然比某位大佬的动态开点快)
{
now = ++cnt; lazy[now] = -;
l[now] = L; r[now] = R;
if(L == R) return;
int mid = (L + R) >> ;
build(lson[now], L, mid);
build(rson[now], mid + , R);
}
void add(int now, int id)
{
if(l[now] == r[now]) {sum[now]++; return;}
int mid = (l[now] + r[now]) >> ;
if(id <= mid) add(lson[now], id);
else add(rson[now], id);
sum[now] = sum[lson[now]] + sum[rson[now]];
}
void pushdown(int now)
{
if(lazy[now] != -) //因为lazy[now]=0代表将区间都改为0,所以没有标记要换一个记号
{
sum[lson[now]] = (r[lson[now]] - l[lson[now]] + ) * lazy[now];
sum[rson[now]] = (r[rson[now]] - l[rson[now]] + ) * lazy[now];
lazy[lson[now]] = lazy[now];
lazy[rson[now]] = lazy[now];
lazy[now] = -;
} }
void update(int now, int L, int R, int d)
{
if(L == l[now] && R == r[now])
{
sum[now] = (r[now] - l[now] + ) * d;
lazy[now] = d; return;
}
pushdown(now);
int mid = (l[now] + r[now]) >> ;
if(R <= mid) update(lson[now], L, R, d);
else if(L > mid) update(rson[now], L, R, d);
else {update(lson[now], L, mid, d); update(rson[now], mid + , R, d);}
sum[now] = sum[lson[now]] + sum[rson[now]];
}
int query(int now, int L, int R)
{
if(!sum[now]) return ; //优化
if(L == l[now] && R == r[now]) return sum[now];
pushdown(now);
int mid = (l[now] + r[now]) >> ;
if(R <= mid) return query(lson[now], L, R);
else if(L > mid) return query(rson[now], L, R);
else return query(lson[now], L, mid) + query(rson[now], mid + , R);
} int main()
{
n = read(); q = read();
scanf("%s", s + );
for(int i = ; i < ; ++i) build(root[i], , n);
for(int i = ; i <= n; ++i) add(root[s[i] - 'a'], i);
for(int i = ; i <= q; ++i)
{
int L = read(), R = read(), k = read();
if(k)
{
int pre = L - ;
for(int j = ; j < ; ++j) //枚举每一棵线段树
{
int ssum = query(root[j], L, R);
if(ssum)
{
update(root[j],L,R,); //先都改成0,在局部覆盖1
update(root[j], pre + , pre + ssum, );
}
pre += ssum;
}
}
else
{
int pre = L - ;
for(int j = ; j >= ; --j) //降序,就倒着枚举
{
int ssum = query(root[j], L, R);
if(ssum)
{
update(root[j],L,R,);
update(root[j], pre + , pre + ssum, );
}
pre += ssum;
}
}
}
for(int i = ; i <= n; ++i) //很暴力的查询
for(int j = ; j < ; ++j)
if(query(root[j], i, i)) {printf("%c", 'a' + j); break;}
enter;
return ;
}

这道题时限5秒,然而还特别容易TLE,所以得做好常数优化工作。

据说某位大佬线段树上每个节点记录26个字母出现的情况,所以只开了一棵线段树,自然就十分的快了,毫无TLE的烦恼。(很显然,我不会写,要不就不讲上述的方法了……)

CF558E A Simple Task的更多相关文章

  1. CF558E A simple task 线段树

    这道题好猥琐啊啊啊啊啊啊 写了一个上午啊啊啊啊 没有在update里写pushup啊啊啊啊 题目大意: 给你一个字符串s,有q个操作 l r 1 :把sl..rsl..r按升序排序 l r 0 :把s ...

  2. 计数排序 + 线段树优化 --- Codeforces 558E : A Simple Task

    E. A Simple Task Problem's Link: http://codeforces.com/problemset/problem/558/E Mean: 给定一个字符串,有q次操作, ...

  3. HDU-1339 A Simple Task

    http://acm.hdu.edu.cn/showproblem.php?pid=1339 正常做法超时,要有点小技巧存在. A Simple Task Time Limit: 2000/1000 ...

  4. A Simple Task

    A Simple Task Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  5. Codeforces 558E A Simple Task (计数排序&&线段树优化)

    题目链接:http://codeforces.com/contest/558/problem/E E. A Simple Task time limit per test5 seconds memor ...

  6. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树

    E. A Simple Task 题目连接: http://www.codeforces.com/contest/558/problem/E Description This task is very ...

  7. Codeforces Round #312 (Div. 2) E. A Simple Task 线段树+计数排序

    题目链接: http://codeforces.com/problemset/problem/558/E E. A Simple Task time limit per test5 secondsme ...

  8. 【题解】 CF11D A Simple Task

    [题解] CF11D A Simple Task 传送门 \(n \le 20\) 考虑状态压缩\(dp\). 考虑状态,\(dp(i,j,O)\)表示从\(i\)到\(j\)经过点集\(O\)的路径 ...

  9. Codeforces 558E A Simple Task(权值线段树)

    题目链接  A Simple Task 题意  给出一个小写字母序列和若干操作.每个操作为对给定区间进行升序排序或降序排序. 考虑权值线段树. 建立26棵权值线段树.每次操作的时候先把26棵线段树上的 ...

随机推荐

  1. 图解 SQL-Server新建作业

    1,启动SQL Server代理(SQL Server Agent),如下图所示: 2,右击作业--新建作业--常规--填写作业名称 3,步骤--新建 4,步骤名称--数据库名--要执行的存储过程名 ...

  2. [javascript] 看知乎学习js事件触发过程

    红色箭头代表捕获阶段 蓝色代表目标阶段 绿色代表冒泡阶段 调用元素对象的addEventListener()方法,参数:事件,回调函数,是否捕获(true代表捕获阶段,false代表冒泡阶段,ie浏览 ...

  3. SpringBoot整合Druid数据连接池

    SpringBoot整合Druid数据连接池 Druid是什么? Druid是Alibaba开源的的数据库连接池.Druid能够提供强大的监控和扩展功能. 在哪里下载druid maven中央仓库: ...

  4. html 如何访问 jar 包里面的静态资源(js、css、字体等)

    前言:最近两天在尝试写一个工具 jar 包,里面包含后台处理的 java 代码,包含前端 html.js.css.字体文件等,过程中解决了访问 jar 包里的静态资源问题,所以记录下来. 附:自己的一 ...

  5. JS获取元素属性

    <style> *{ box-sizing: border-box; } html, body { margin: 0px; width: 100%; height: 100%; over ...

  6. @ModelAttribute注解详解

    @ModelAttribute注解详解 1.@ModelAttribute定义: 被该注解定义的方法,会在该方法所在的controller的任何目标方法执行之前执行 2.@ModelAttribute ...

  7. AMD与CMD的异同

    AMD与CMD的异同? 1.从官方推荐的写法上面得出: CMD ----- 依赖就近 //CMD define(function(require,exports,module){ var a = re ...

  8. 【代码笔记】iOS-TableViewOfTwoSecton

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> @interface RootViewController ...

  9. thymeleaf标签使用方法总结

    https://blog.csdn.net/quuqu/article/details/52511933 常用th标签https://www.cnblogs.com/suncj/p/4030393.h ...

  10. 更改Outlook 2013中Exchange数据文件存放路径

    昨天新入职目前所在的公司,在原公司一直都是直接使用Outlook设置用户名和密码后,然后将*.pst邮件的数据文件保存在其他盘符,以防止在更新操作系统时出现邮件丢失的情况:但是目前公司使用的是Exch ...