Linux内核设计(第二周)——操作系统工作原理
Linux内核设计(第二周)——操作系统工作原理
一、学习笔记总结
1.函数调用堆栈
(1)、函数调用堆栈。
堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间。
cpu内部已经集成好的功能,pop,push,enter……
函数调用构架
传递参数,通过堆栈
保存返回值,%eax
提供局部变量空间
……
C语言编译器对堆栈的使用有一套自己的规则,功能相同,指令有区别。
(2)、深入理解函数调用堆栈
堆栈相关的寄存器:
%esp——堆栈指针
%ebp——基址指针堆栈操作
push——栈顶地址减少
pop——相反%ebp在C语言中用作记录当前函数调用基址
其他关键寄存器
CS:eip:总是指向下一条的指令地址
顺序执行、跳转|分支(cs:eip的值会根据程序的需求更改)、call、ret、发生中断时。调用函数
call指令:
(1) 将eip中下一条指令的地址A保存在栈顶;
(2) 设置eip指向被调用程序代码开始处。
ret(return)指令:将地址A恢复到eip中
(3)、传递参数与局部变量
方法:gcc-g生成可执行文件,用objdump -S获得反汇编文件。
2.利用Linux内核部分源代码分析存储程序计算机工作模型及时钟中断
(1).mykernel实验平台涉及的思想
三大法宝:
存储程序计算机
函数调用堆栈
中断
当中断发生时,由CPU和内核代码共同实现了保存现场和恢复现场。
把eip指向中断处理程序的入口,保存现场。
二.利用mykernel实验模拟计算机硬件平台
1.实验过程
使用实验楼的虚拟机打开shell
cd LinuxKernel/linux-3.9.4
qemu -kernel arch/x86/boot/bzImage
然后cd mykernel 您可以看到qemu窗口输出的内容的代码mymain.c和myinterrupt.c
mymain.c文件关键代码部分
myinterrupt.c文件关键代码部分
2.代码分析
(1)mymain.c
/*
* linux/mykernel/mymain.c
*
* Kernel internal my_start_kernel
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
tPCB task[MAX_TASK_NUM]; //声明一个PCB数组
tPCB * my_current_task = NULL; //声明当前task指针
volatile int my_need_sched = 0; //是否需要调度标志
void my_process(void);
void __init my_start_kernel(void)
{
int pid = 0;
int i;
/* 初始化 0号进程*/
task[pid].pid = pid;
task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; /* 实际上是my_process*/
task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
task[pid].next = &task[pid]; // 定义堆栈的栈顶
/*创建更多的子进程*/
for(i=1;i<MAX_TASK_NUM;i++)
{
memcpy(&task[i],&task[0],sizeof(tPCB));
task[i].pid = i;
task[i].state = -1;
task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
task[i].next = task[i-1].next;
task[i-1].next = &task[i];
}
/* 从0号进程开始启动 */
pid = 0;
my_current_task = &task[pid];
asm volatile(
"movl %1,%%esp\n\t" /* 设置 esp 的值*/
"pushl %1\n\t" /* 将 ebp 压栈(此时esp=ebp),%1相当于task[pid].thread.sp*/
"pushl %0\n\t" /* 将 eip 压栈,%0相当于task[pid].thread.ip*/
"ret\n\t" /* 相当于 eip 出栈 */
"popl %%ebp\n\t" /* 0号进程正是启动 */
:
: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/
);
}
void my_process(void)
{
int i = 0;
while(1)
{
i++;
if(i%10000000 == 0)
{
printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
if(my_need_sched == 1)
{
my_need_sched = 0;
my_schedule();
}
printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
}
}
}
(2)myinterrupt.c
/*
* linux/mykernel/myinterrupt.c
*
* Kernel internal my_timer_handler
*
* Copyright (C) 2013 Mengning
*
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>
#include "mypcb.h"
extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;
/*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)
{
#if 1
if(time_count%1000 == 0 && my_need_sched != 1)
{
printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
my_need_sched = 1;
}
time_count ++ ;
#endif
return;
}
void my_schedule(void)
{
tPCB * next;
tPCB * prev;
if(my_current_task == NULL
|| my_current_task->next == NULL)
{
return;
}
printk(KERN_NOTICE ">>>my_schedule<<<\n");
/* schedule */
next = my_current_task->next;
prev = my_current_task;
if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
{
/* 进程切换跳转到下一进程 */
asm volatile(
"pushl %%ebp\n\t" /* 保存当前ebp */
"movl %%esp,%0\n\t" /* 保存当前esp */
"movl %2,%%esp\n\t" /* 重新记录要跳转进程的 esp,%2为 next->thread.sp*/
"movl $1f,%1\n\t" /* 保存当前 eip ,%1为prev->thread.ip*/
"pushl %3\n\t"
"ret\n\t" /* 记录要跳转进程的 eip,%3为 next->thread.ip*/
"1:\t" /* 下一个进程开始执行 */
"popl %%ebp\n\t"
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
}
else
{
next->state = 0;
my_current_task = next;
printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
/* switch to new process */
asm volatile(
"pushl %%ebp\n\t" /* 保存当前 ebp */
"movl %%esp,%0\n\t" /* 保存当前 esp */
"movl %2,%%esp\n\t" /* 重新记录要跳转进程的 esp ,%2为 next->thread.sp*/
"movl %2,%%ebp\n\t" /* 重新记录要跳转进程的 ebp,%2为 next->thread.sp */
"movl $1f,%1\n\t" /* 保存当前 eip ,%1为prev->thread.ip,%1f就是指标号1:的代码在内存中存储的地址*/
"pushl %3\n\t"
"ret\n\t" /* 重新记录要跳转进程的 eip,%3为 next->thread.ip */
: "=m" (prev->thread.sp),"=m" (prev->thread.ip)
: "m" (next->thread.sp),"m" (next->thread.ip)
);
}
return;
}
#三、总结
本周从计算机操作系统对于程序的调用学起,结合了以前学习的汇编、C语言的知识,对于计算机内部对于中断的处理和进程切换有新的认识。有一些不明白的内容老师也在课堂上已经做出了详细的解答,很形象生动。本周因为一些个人因素进度有些太慢,这种情况应该有所规避,以后要改正。
Linux内核设计(第二周)——操作系统工作原理的更多相关文章
- Linux内核设计第二周——操作系统工作原理
Linux内核设计第二周 ——操作系统工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 执行效果 从图中可以看出,每执行my_ start_ kernel函数两次或一次,my_ time ...
- Linux内核分析第二周--操作系统是如何工作的
Linux内核分析第二周--操作系统是如何工作的 李雪琦 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- linux内核分析 第二周 操作系统是如何工作的
银雪纯 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.计算机是如何工作的 ...
- 20135327郭皓——Linux内核分析第二周 操作系统是如何工作的
操作系统是如何工作的 上章重点回顾: 计算机是如何工作的?(总结)——三个法宝 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的 ...
- Linux内核设计第二周学习总结 完成一个简单的时间片轮转多道程序内核代码
陈巧然 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.使用实验楼的虚拟机 ...
- Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理
Linux内核设计第一周 ——从汇编语言出发理解计算机工作原理 作者:宋宸宁(20135315) 一.实验过程 图1 编写songchenning5315.c文件 图2 将c文件汇编成32位机器语言 ...
- LINUX内核分析第二周学习总结——操作系统是如何工作的
LINUX内核分析第二周学习总结——操作系统是如何工作的 张忻(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course ...
- Linux内核分析第二周学习博客——完成一个简单的时间片轮转多道程序内核代码
Linux内核分析第二周学习博客 本周,通过实现一个简单的操作系统内核,我大致了解了操作系统运行的过程. 实验主要步骤如下: 代码分析: void my_process(void) { int i = ...
- linux内核分析第二周
网易云课堂linux内核分析第二周 20135103 王海宁 <Linux内核分析>MOOC课程http://mooc.study.163.com/cours ...
- Linux内核分析第二周学习笔记
linux内核分析第二周学习笔记 标签(空格分隔): 20135328陈都 陈都 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.co ...
随机推荐
- PyQt5--QColorDiaglog
# -*- coding:utf-8 -*- ''' Created on Sep 17, 2018 @author: SaShuangYiBing Comment: ''' import sys f ...
- BZOJ3251:树上三角形(乱搞)
Description 给定一大小为n的有点权树,每次询问一对点(u,v),问是否能在u到v的简单路径上取三个点权,以这三个权值为边长构成一个三角形.同时还支持单点修改. Input 第一行两个整数n ...
- 2018-2019-2 20165302 《网络对抗技术》Exp4 恶意代码分析
实验要求 1.监控你自己系统的运行状态,看有没有可疑的程序在运行 2.分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用原生指令或sysinternals,systracer套 ...
- PAT B1033 旧键盘打字 (20 分)
旧键盘上坏了几个键,于是在敲一段文字的时候,对应的字符就不会出现.现在给出应该输入的一段文字.以及坏掉的那些键,打出的结果文字会是怎样? 输入格式: 输入在 2 行中分别给出坏掉的那些键.以及应该输入 ...
- C++之new和delete操作符
在C语言中的动态分配和释放内存的函数是malloc calloc 和 free , 而在C++中要用 new new[] delete delete[] 来申请动态空间和释放空间. 注意:的是new. ...
- Android 对BaseAdapter做优化处理
对于BaseAdapter相信大家都不陌生,都知道该怎样用.怎样显示数据.怎样尽可能的把每个item做的令自己满意.但问题来了:有些朋友会说我界面做的非常的漂亮,数据也显示的非常完美,但是问什么我的L ...
- statefulSet + headless service 学习记录 service :selector --> template :label
1.statefulset.yaml apiVersion: apps/v1kind: StatefulSetmetadata: name: webspec: serviceName: &q ...
- 如何高效的通过BP算法来训练CNN
< Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的 ...
- js中数组的使用
使用js时候,很多情况下要使用数组.就写写数组中一些常用的方法. js中定义一个数组,一般有以下2种方法. 1. var arr = new Array(3); // 声明数组有3个元素 arr[0] ...
- Eclipse-快捷键大全(转载)
快速展开类:ctrl + shift +*(小键盘) 快速关闭类:ctrl+ shift + /(小键盘) Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl ...