BM求线性递推模板(杜教版)
BM求线性递推是最近了解到的一个黑科技
如果一个数列、其能够通过线性递推而来
例如使用矩阵快速幂优化的 DP 大概都可以丢进去
则使用 BM 即可得到任意 N 项的数列元素
参考博客 : 暂时没有、 找到了一个、希望你能看懂吧、click here
以下是 2018 焦作网络赛 L 题 AC 代码、可做模板
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head ll n;
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
/*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
int nCase;
scanf("%d", &nCase);
while(nCase--){
scanf("%lld", &n);
printf("%lld\n",1LL * linear_seq::gao(v,n-) % mod);
}
}
BM求线性递推模板(杜教版)的更多相关文章
- 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )
题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...
- 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推
题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...
- Berlekamp Massey算法求线性递推式
BM算法求求线性递推式 P5487 线性递推+BM算法 待AC. Poor God Water // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意 God Wate ...
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- bzoj4161 (k^2logn求线性递推式)
分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamil ...
- 【THUSC2017】【LOJ2981】如果奇迹有颜色 DP BM 打表 线性递推
题目大意 有一个 \(n\) 个点的环,你要用 \(m\) 中颜色染这 \(n\) 个点. 要求连续 \(m\) 个点的颜色不能是 $1 \sim m $ 的排列. 两种环相同当且仅当这两个环可以在旋 ...
- LG5487 【模板】线性递推+BM算法
[模板]线性递推+BM算法 给出一个数列 \(P\) 从 \(0\) 开始的前 \(n\) 项,求序列 \(P\) 在\(\bmod~998244353\) 下的最短线性递推式,并在 \(\bmod~ ...
- 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)
这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...
- HDU - 6172:Array Challenge (BM线性递推)
题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. ...
随机推荐
- javascript中“use strict”的好处和坏处
1.为什么使用严格模式? 消除javascript语法的一些不合理.不严谨之处,减少一些怪异行为: 消除代码运行的不安全之处,保证代码的运行: 提高编译效率,增加运行效率: 为未来新版本的javasc ...
- spark streaming 6: BlockGenerator、RateLimiter
BlockGenerator和RateLimiter其实很简单,但是它包含了几个很重要的属性配置的处理,所以记录一下. ))) , SECONDS) From WizNote
- koa 基础(十四)cookie 的基本使用
1.app.js /** * cookie的简介: * 1.cookie保存在浏览器客户端 * 2.可以让我们用同一个浏览器访问同一个域名的时候共享数据 * * cookie的作用: * 1.保存用户 ...
- leetcode常见算法与数据结构汇总
leetcode刷题之后,很多问题老是记忆不深刻,因此特意开此帖: 一.对做过题目的总结: 二.对一些方法精妙未能领会透彻的代码汇总,进行时常学习: 三.总结面试笔试常见题目,并讨论最优解法及各种解法 ...
- GitHub-Microsoft:DotNet3
ylbtech-GitHub-Microsoft:DotNet3 1.返回顶部 · mbmlbook Sample code for the Model-Based Machine Learning ...
- GitHub:Microsoft
ylbtech-GitHub:Microsoft 1.返回顶部 2.返回顶部 3.返回顶部 4.返回顶部 5.返回顶部 1. https://github.com/microsoft ...
- 用泛型方法Java从实体中提取属性值,以及在泛型方法中的使用
public <T> T getFieldValue(Object target, String fieldName, Class<T> typeName) { try { O ...
- jinja2渲染使用
说明:通过jinja2渲染后只能打印出来效果,目前无法保存 例1:渲染 .j2 文件 1.安装jinja2模块 pip3 install jinja2 2.定义模板 说明:变量必须是小写,大写有的情况 ...
- 083. Remove Duplicates from Sorted List
题目链接:https://leetcode.com/problems/rotate-list/description/ Given a sorted linked list, delete all d ...
- JavaScript基础入门09
目录 JavaScript 基础入门09 Event 自定义右键菜单 获取鼠标按键 获取鼠标坐标 获取键盘按键 页面中位置的获取 浏览器的默认行为 冒泡 什么是冒泡 小练习 JavaScript 基础 ...