BM求线性递推模板(杜教版)

BM求线性递推是最近了解到的一个黑科技

如果一个数列、其能够通过线性递推而来

例如使用矩阵快速幂优化的 DP 大概都可以丢进去

则使用 BM 即可得到任意 N 项的数列元素

参考博客 : 暂时没有、 找到了一个、希望你能看懂吧、click here

以下是 2018 焦作网络赛 L 题 AC 代码、可做模板

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <map>
#include <set>
#include <cassert>
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
ll powmod(ll a,ll b) {ll res=;a%=mod; assert(b>=); for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
// head ll n;
namespace linear_seq {
const int N=;
ll res[N],base[N],_c[N],_md[N]; vector<int> Md;
void mul(ll *a,ll *b,int k) {
rep(i,,k+k) _c[i]=;
rep(i,,k) if (a[i]) rep(j,,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
for (int i=k+k-;i>=k;i--) if (_c[i])
rep(j,,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
rep(i,,k) a[i]=_c[i];
}
int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
ll ans=,pnt=;
int k=SZ(a);
assert(SZ(a)==SZ(b));
rep(i,,k) _md[k--i]=-a[i];_md[k]=;
Md.clear();
rep(i,,k) if (_md[i]!=) Md.push_back(i);
rep(i,,k) res[i]=base[i]=;
res[]=;
while ((1ll<<pnt)<=n) pnt++;
for (int p=pnt;p>=;p--) {
mul(res,res,k);
if ((n>>p)&) {
for (int i=k-;i>=;i--) res[i+]=res[i];res[]=;
rep(j,,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
}
}
rep(i,,k) ans=(ans+res[i]*b[i])%mod;
if (ans<) ans+=mod;
return ans;
}
VI BM(VI s) {
VI C(,),B(,);
int L=,m=,b=;
rep(n,,SZ(s)) {
ll d=;
rep(i,,L+) d=(d+(ll)C[i]*s[n-i])%mod;
if (d==) ++m;
else if (*L<=n) {
VI T=C;
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
L=n+-L; B=T; b=d; m=;
} else {
ll c=mod-d*powmod(b,mod-)%mod;
while (SZ(C)<SZ(B)+m) C.pb();
rep(i,,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
++m;
}
}
return C;
}
int gao(VI a,ll n) {
VI c=BM(a);
c.erase(c.begin());
rep(i,,SZ(c)) c[i]=(mod-c[i])%mod;
return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
}
}; int main() {
/*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/
vector<int>v;
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
v.push_back();
int nCase;
scanf("%d", &nCase);
while(nCase--){
scanf("%lld", &n);
printf("%lld\n",1LL * linear_seq::gao(v,n-) % mod);
}
}

BM求线性递推模板(杜教版)的更多相关文章

  1. 2018 焦作网络赛 L Poor God Water ( AC自动机构造矩阵、BM求线性递推、手动构造矩阵、矩阵快速幂 )

    题目链接 题意 : 实际上可以转化一下题意 要求求出用三个不同元素的字符集例如 { 'A' .'B' .'C' } 构造出长度为 n 且不包含 AAA.BBB CCC.ACB BCA.CAC CBC ...

  2. 牛客多校第九场 A The power of Fibonacci 杜教bm解线性递推

    题意:计算斐波那契数列前n项和的m次方模1e9 题解: $F[i] – F[i-1] – F[i-2] = 0$ $F[i]^2 – 2 F[i-1]^2 – 2 F[i-2]^2 + F[i-3] ...

  3. Berlekamp Massey算法求线性递推式

    BM算法求求线性递推式   P5487 线性递推+BM算法   待AC.   Poor God Water   // 题目来源:ACM-ICPC 2018 焦作赛区网络预赛 题意   God Wate ...

  4. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  5. bzoj4161 (k^2logn求线性递推式)

    分析: 我们可以写把转移矩阵A写出来,然后求一下它的特征多项式,经过手动计算应该是这样的p(x)=$x^k-\sum\limits_{i=1}^ka_i*x^{k-i}$ 根据Cayley-Hamil ...

  6. 【THUSC2017】【LOJ2981】如果奇迹有颜色 DP BM 打表 线性递推

    题目大意 有一个 \(n\) 个点的环,你要用 \(m\) 中颜色染这 \(n\) 个点. 要求连续 \(m\) 个点的颜色不能是 $1 \sim m $ 的排列. 两种环相同当且仅当这两个环可以在旋 ...

  7. LG5487 【模板】线性递推+BM算法

    [模板]线性递推+BM算法 给出一个数列 \(P\) 从 \(0\) 开始的前 \(n\) 项,求序列 \(P\) 在\(\bmod~998244353\) 下的最短线性递推式,并在 \(\bmod~ ...

  8. 【模板】BM + CH(线性递推式的求解,常系数齐次线性递推)

    这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k ...

  9. HDU - 6172:Array Challenge (BM线性递推)

    题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. ...

随机推荐

  1. JavaWeb-SpringSecurity实现需求-判断请求是否以html结尾

    系列博文 项目已上传至guthub 传送门 JavaWeb-SpringSecurity初认识 传送门 JavaWeb-SpringSecurity在数据库中查询登陆用户 传送门 JavaWeb-Sp ...

  2. Android_(控件)使用ListView显示Android系统中SD卡的文件列表

    使用ListView显示Android SD卡中的文件列表 父类布局activity_main.xml,子类布局line.xml(一个文件的单独存放) 运行截图: 程序结构: <?xml ver ...

  3. gcd表(欧几里得定理)

    题目:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=797 gcd表 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 ...

  4. eclipse外部导入Javaweb项目时,项目上出现红叉的一个可能的解决办法

    解决办法:http://blog.csdn.net/qq_32671287/article/details/52467885 进入项目包下的.settings目录,找到org.eclipse.wst. ...

  5. EasyUI中对于Grid的隐藏与显示

    $('#div_Grid').datagrid('hideColumn', 'mtnDate'); $('#div_Grid').datagrid('showColumn', 'mtnDate');

  6. SSL及TLS

    SSL SSL(Secure Sockets Layer 安全套接层),及其继任者传输层安全(Transport Layer Security,TLS)是为网络通信提供安全及数据完整性的一种安全协议. ...

  7. 百度地图js判断点是否在圆形区域内

    /** * Created by LEGION on 2018/10/11. *//** * @fileoverview GeoUtils类提供若干几何算法,用来帮助用户判断点与矩形. * 圆形.多边 ...

  8. 安装RabbitMq,写程序发送接收消息

    1.安装Erlang和RabbitMq 在安装RabbitMq之前需要安装的Erlang(esl-erlang_22.0_windows_amd64.exe): https://pan.baidu.c ...

  9. k8s部署01-----what is k8s?

    简介 1.Kubernetes代码托管在GitHub上:https://github.com/kubernetes/kubernetes/. 2.Kubernetes是一个开源的,容器集群管理系统,K ...

  10. ubuntu下如何高速下载?

    答: 使用uget工具 1.安装uget sudo apt-get install uget -y 2.下载时在设置里指定最大连接数 笔者指定最大连接数为10,可以适当调整此值