【转载】softmax的性质及其实现
原文地址:https://segmentfault.com/a/1190000010039529?utm_source=tag-newest
softmax函数将任意n维的实值向量转换为取值范围在(0,1)之间的n维实值向量,并且总和为1。
例如:向量softmax([1.0, 2.0, 3.0]) ------> [0.09003057, 0.24472847, 0.66524096]
性质:
- 因为softmax是单调递增函数,因此不改变原始数据的大小顺序。
- 将原始输入映射到(0,1)区间,并且总和为1,常用于表征概率。
- softmax(x) = softmax(x+c), 这个性质用于保证数值的稳定性。
softmax的实现及数值稳定性
一个最简单的计算给定向量的softmax的实现如下:
import numpy as np
def softmax(x):
"""Compute the softmax of vector x."""
exp_x = np.exp(x)
softmax_x = exp_x / np.sum(exp_x)
return softmax_x
让我们来测试一下上面的代码:
softmax([1, 2, 3])
array([0.09003057, 0.24472847, 0.66524096])
但是,当我们尝试输入一个比较大的数值向量时,就会出错:
softmax([1000, 2000, 3000])
array([nan, nan, nan])
这是由numpy中的浮点型数值范围限制所导致的。当输入一个较大的数值时,sofmax函数将会超出限制,导致出错。
为了解决这一问题,这时我们就能用到sofmax的第三个性质,即:softmax(x) = softmax(x+c),
一般在实际运用中,通常设定c = - max(x)。
接下来,我们重新定义softmax函数:
import numpy as np
def softmax(x):
"""Compute the softmax in a numerically stable way."""
x = x - np.max(x)
exp_x = np.exp(x)
softmax_x = exp_x / np.sum(exp_x)
return softmax_x
然后再次测试一下:
softmax([1000, 2000, 3000])
array([ 0., 0., 1.])
Done!
以上都是基于向量上的softmax实现,下面提供了基于向量以及矩阵的softmax实现,代码如下:
import numpy as np
def softmax(x):
"""
Compute the softmax function for each row of the input x.
Arguments:
x -- A N dimensional vector or M x N dimensional numpy matrix.
Return:
x -- You are allowed to modify x in-place
"""
orig_shape = x.shape
if len(x.shape) > 1:
# Matrix
exp_minmax = lambda x: np.exp(x - np.max(x))
denom = lambda x: 1.0 / np.sum(x)
x = np.apply_along_axis(exp_minmax,1,x)
denominator = np.apply_along_axis(denom,1,x)
if len(denominator.shape) == 1:
denominator = denominator.reshape((denominator.shape[0],1))
x = x * denominator
else:
# Vector
x_max = np.max(x)
x = x - x_max
numerator = np.exp(x)
denominator = 1.0 / np.sum(numerator)
x = numerator.dot(denominator)
assert x.shape == orig_shape
return x
【转载】softmax的性质及其实现的更多相关文章
- Softmax vs. Softmax-Loss VS cross-entropy损失函数 Numerical Stability(转载)
http://freemind.pluskid.org/machine-learning/softmax-vs-softmax-loss-numerical-stability/ 卷积神经网络系列之s ...
- 【转载】softmax的log似然代价函数(求导过程)
全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...
- 【转载】深度学习中softmax交叉熵损失函数的理解
深度学习中softmax交叉熵损失函数的理解 2018-08-11 23:49:43 lilong117194 阅读数 5198更多 分类专栏: Deep learning 版权声明:本文为博主原 ...
- Catalan 数列的性质及其应用(转载)
转自:http://lanqi.org/skills/10939/ 卡特兰数 — 计数的映射方法的伟大胜利 发表于2015年11月8日由意琦行 卡特兰(Catalan)数来源于卡特兰解决凸$n+2$边 ...
- 转载:sigmoid和softmax总结
转自:http://blog.csdn.net/u014422406/article/details/52805924 sigmoid函数(也叫逻辑斯谛函数): 引用wiki百科的定义: A logi ...
- 全连接与softmax[转载]
转自:https://www.jianshu.com/p/88bb976ccbd9 1.全连接示例: 2.softmax softmax输入层应和输出层(输出维度与类别数一致)纬度一样,如果不一样,就 ...
- Machine Learning 学习笔记 (3) —— 泊松回归与Softmax回归
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson ...
- (转载)经典计算机视觉论文笔记——DeepFace\DeepID\DeepID2\DeepID3\FaceNet\VGGFace汇总
1. DeepFace:Closing the Gap to Human-Level Performance in Face Verification 最早将深度学习用于人脸验证的开创性工作.Face ...
- 逻辑回归与神经网络还有Softmax regression的关系与区别
本文讨论的关键词:Logistic Regression(逻辑回归).Neural Networks(神经网络) 之前在学习LR和NN的时候,一直对它们独立学习思考,就简单当做是机器学习中的两个不同的 ...
随机推荐
- 关于 keepalived+lvs 中参数 persistence_timeout 的说明
在keepalived+lvs的配置文件keepalived.conf中有一个选项persistence_timeout 该选项的作用:在一定时间内使来自于同一个Client的所有TCP请求被负载到同 ...
- ASP.NET MVC5入门指南(2)*入门介绍*创建您的第一个应用
开始吧 首先安装Visual Studio 2017.然后,打开Visual Studio. Visual Studio是一个IDE或集成开发环境.就像使用Microsoft Word编写文档一样,您 ...
- 【环境配置】出现:Microsoft Visual C++ 14.0 is required 的解决方案
参考blog https://download.csdn.net/download/amoscn/10399046 https://blog.csdn.net/weixin_42057852/arti ...
- numpy常用矩阵操作
1.删除列 column_to_delete = [0, 1, 2] arr = np.delete(arr, [0, 1, 2], axis=1) 2.归一化 arr = normalize(arr ...
- MacBook pro管理员变成普通用户无法解锁问题
最近使用Mac的时候,把管理员的名字修改了一下,WTF?没有管理员权限了?然后就没有解锁权限了,这可以说是Mac的一个致命bug呀!下载软件也不可以了.具体我的解决方式在这里记录一下,以供和我遇到同样 ...
- Confluence 6 分享一个文件
协同合作和编辑不仅仅是发生在页面中,很多时候你需要与你的项目小组针对文档,报告,图片,表格进行协同操作.不管是针对性的市场计划或者一个完整的项目计划,你可以在 Confluence 中让你的项目小组成 ...
- 12.JSTL标签
JSTL是一个不断完善的开源代码的JSP标签库,在JSP2.0中已将JSTL作为标准支持.使用JSTL可以取代在传统JSP程序中嵌入Java代码的做法,在一定程度上提高了代码的可维护性. JSTL有5 ...
- 深度理解链式前向星——转载自ACdreamer
转载自ACdreamer [转载]深度理解链式前向星 我们首先来看一下什么是前向星. 前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序 ...
- 2019牛客暑期多校训练营(第二场)J
题意 给一个长度为1e9的只包含1和-1的数列,1的个数不超过1e7,计算有多少对\((l,r)\)满足\(\sum_{i=l}^r a[i]>0\) 分析 dp求出每段连续的1最右端为右端点的 ...
- SVN如何处理包含@2x or @3x的图片文件
一般iOS图片文件都会包含@2x,@3x之类的字符比如icon@2x,icon@3x,当你在svn命令行中add或是delete的时候总是报错说file does not exit之类的错误,其实之类 ...