链接:

https://www.acwing.com/problem/content/199/

题意:

给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pi 和 ci 即可。

思路:

对于n!, 考虑1-n的质数, 对于每个质数,pk在n!出现的次数为n/(pk).

计算k时, 会计算k+1,的次数, 所以每个只用加一次.

代码:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 1e6+10; int IsPri[MAXN], Pri[MAXN];
long long Cnt[MAXN];
int pos, n; void Euler()
{
memset(IsPri, 0, sizeof(IsPri));
memset(Pri, 0, sizeof(Pri));
memset(Cnt, 0, sizeof(Cnt));
IsPri[1] = 1;
pos = 0;
for (int i = 2;i <= n;i++)
{
if (IsPri[i] == 0)
Pri[++pos] = i;
for (int j = 1;j <= pos && Pri[j]*i <= n;j++)
{
IsPri[Pri[j]*i] = 1;
if (i%Pri[j] == 0)
break;
}
}
} int main()
{
scanf("%d", &n);
Euler();
for (int i = 1;i <= pos;i++)
{
long long tmp = Pri[i];
while (tmp <= n)
{
Cnt[i] += n/tmp;
tmp *= Pri[i];
}
}
for (int i = 1;i <= pos;i++)
printf("%d %lld\n", Pri[i], Cnt[i]); return 0;
}

Acwing-197-阶乘分解(质数)的更多相关文章

  1. AcWing 197. 阶乘分解 (筛法)打卡

    给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...

  2. Acwing 197. 阶乘分解

    给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...

  3. 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘

    /* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...

  4. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m

    给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...

  5. luogu1445 [violet]樱花 阶乘分解

    题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...

  6. CH 3101 - 阶乘分解 - [埃筛]

    题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就 ...

  7. LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子

    http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...

  8. LightOJ - 1138 (二分+阶乘分解)

    题意:求阶乘尾部有Q(1 ≤ Q ≤ 108)个0的最小N 分析:如果给出N,然后求N!尾部0的个数的话,直接对N除5分解即可(因为尾部0肯定是由5*2构成,那么而在阶乘种,2的因子个数要比5少,所以 ...

  9. NEU 1173: 这是物理学的奇迹!! 分解质数

    1173: 这是物理学的奇迹!! 题目描述 goagain在做物理电学实验时需要一个2Ω的电阻,但是他发现他的实验台上只剩下了3Ω,4Ω,5Ω,6Ω的电阻若干,于是goagain把两个4Ω的电阻并联起 ...

随机推荐

  1. spring boot 项目开发常用目录结构

    在spring boot开发中一些常用的目录划分 转载自https://blog.csdn.net/Auntvt/article/details/80381756: 一.代码层结构 根目录:net.c ...

  2. Nginx、OpenResty和Kong的基本概念与使用方法

    Nginx.OpenResty和Kong的基本概念与使用方法 2018年10月10日 22:46:08 李佶澳 阅读数 322更多 分类专栏: kubernetes   版权声明:本文为博主原创文章, ...

  3. C# HttpWebRequest向远程地址Post文件

    HttpWebRequest向远程地址Post文件 /// <summary> /// 上传文件到远程服务器 /// </summary> /// <param name ...

  4. java 异常捕捉 ( try catch finally ) 你真的掌握了吗?

    掌握下面几条原则就可以完全解决“当try.catch.finally遭遇return”的问题. 原则:1.finally语句块中的代码是一定会执行的,而catch块中的代码只有发生异常时才会执行. 2 ...

  5. Linux下安装Jenkins并且发布.net core

    一,基础环境 1,操作系统:CentOS 7.3 2,Docker version 18.09.6 docker安装参考:https://www.cnblogs.com/liuxiaoji/p/110 ...

  6. ZROIDay3-比赛解题报告

    ZROIDay3-比赛解题报告 瞎扯 从今天开始考试有点不在状态,可能是因为不太适应题目的原因,T1已经接近了思想但是没有想到状态转移,T2思考方向错误,T3不会打LCT,还是太菜了 A 考场上想到要 ...

  7. 题解 UVA1316 【Supermarket】

    题目链接: https://www.luogu.org/problemnew/show/UVA1316 思路: 根据题目意思,我们需要用到贪心的思想,越晚过期的商品当然是越晚卖好.同时你假如有多个商品 ...

  8. 基于SQL Server日志链查看数据库insert/update/delete操作(一)

    在MSSQLServer2008下的语句 不同版本可能语句会有微小差别 SELECT [Slot ID], [Transaction ID], Operation, AllocUnitName, [C ...

  9. jvm之java类加载机制和类加载器(ClassLoader),方法区结构,堆中实例对象结构的详解

    一.类加载或类初始化:当程序主动使用某个类时,如果该类还未被加载到内存中,则JVM会通过加载.连接.初始化3个步骤来对该类进行初始化.如果没有意外,JVM将会连续完成3个步骤. 二.类加载时机:  1 ...

  10. redis的使用(Java使用Jedis客户端连接redis)

    一.添加依赖 <dependency>   <groupId>redis.clients</groupId>   <artifactId>jedis&l ...