C - NP-Hard Problem
Crawling in process... Crawling failed Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u
Description
Pari wants to buy an expensive chocolate from Arya. She has n coins, the value of the i-th coin is ci. The price of the chocolate is k, so Pari will take a subset of her coins with sum equal to k and give it to Arya.
Looking at her coins, a question came to her mind: after giving the coins to Arya, what values does Arya can make with them? She is jealous and she doesn't want Arya to make a lot of values. So she wants to know all the values x, such that Arya will be able to make x using some subset of coins with the sum k.
Formally, Pari wants to know the values x such that there exists a subset of coins with the sum k such that some subset of this subset has the sum x, i.e. there is exists some way to pay for the chocolate, such that Arya will be able to make the sum x using these coins.
Input
The first line contains two integers n and k (1 ≤ n, k ≤ 500) — the number of coins and the price of the chocolate, respectively.
Next line will contain n integers c1, c2, ..., cn (1 ≤ ci ≤ 500) — the values of Pari's coins.
It's guaranteed that one can make value k using these coins.
Output
First line of the output must contain a single integer q— the number of suitable values x. Then print q integers in ascending order — the values that Arya can make for some subset of coins of Pari that pays for the chocolate.
Sample Input
6 18
5 6 1 10 12 2
16
0 1 2 3 5 6 7 8 10 11 12 13 15 16 17 18
3 50
25 25 50
3
0 25 50
Sample Output
Hint
Description
Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.
Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e. or
(or both).
Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.
They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).
Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.
Each of the next m lines contains a pair of integers ui and vi (1 ≤ ui, vi ≤ n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.
Output
If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).
If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains k integers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.
Sample Input
4 2
1 2
2 3
1
2
2
1 3
3 3
1 2
2 3
1 3
-1
Sample Output
Hint
In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).
In the second sample, there is no way to satisfy both Pari and Arya.
题意:告诉你xmod(c1,c2,c3...),问你是否能求出xmodk
思路:求给出的c1,c2,c3,,,中质因子是否能组成k的倍数。
代码:
#include <iostream>
#include <cstdio>
using namespace std;
inline int gcd(int a,int b)
{
if(a%b==0)
return b;
return gcd(b,a%b);
}
inline int lcm(int a,int b)
{
return a/gcd(a,b)*b;
}
int main()
{ int n,k;
while(cin>>n>>k)
{ int l=1;
int a;
for(int i=0;i<n;i++)
{ scanf("%d",&a);
int g=gcd(a,k);
l=lcm(l,g);
}
if(l==k)
printf("Yes\n");
else
printf("No\n"); } }
C - NP-Hard Problem的更多相关文章
- 集合覆盖 顶点覆盖: set cover和vertex cover
这里将讲解一下npc问题中set cover和vertex cover分别是什么. set cover: 问题定义: 实例:现在有一个集合A,其中包含了m个元素(注意,集合是无序的,并且包含的元素也是 ...
- Faster RCNN 爬坑记录
训练 在博客http://blog.csdn.net/Suii_v5/article/details/73776299中介绍了基本的错误类型.我只是做一些自己问题的补充 在error6中,调整nump ...
- 证明与计算(1): Decision Problem, Formal Language L, P and NP
0x01 从判定问题到形式语言 这篇讲知识证明的wiki([1]): https://en.wikipedia.org/wiki/Proof_of_knowledge 里面有一句话: Let x be ...
- NP问题/NP完全问题(NP-complete problem)如何判断是否是NP完全问题
在算法复杂度分析的过程中,人们常常用特定的函数来描述目标算法,随着变量n的增长,时间或者空间消耗的增长曲线,近而进一步分析算法的可行性(有效性). 引入了Big-O,Big-Ω,来描述目标算法的上限. ...
- 转载 什么是P问题、NP问题和NPC问题
原文地址http://www.matrix67.com/blog/archives/105 这或许是众多OIer最大的误区之一. 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜 ...
- HDU1760 A New Tetris Game NP态
A New Tetris Game Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- Gambler's Ruin Problem and 3 Solutions
In my stochastic processes class, Prof Mike Steele assigned a homework problem to calculate the ruin ...
- (数学)P、NP、NPC、NP hard问题
概念定义: P问题:能在多项式时间内解决的问题: NP问题:(Nondeterministic Polynomial time Problem)不能在多项式时间内解决或不确定能不能在多项式时间内解决, ...
- P,NP,NP_hard,NP_complete问题定义
背景:在看李航的<统计学习方法时>提到了NP完全问题,于是摆之. 问题解答:以下是让我豁然开朗的解答的摘抄: 最简单的解释:P:算起来很快的问题NP:算起来不一定快,但对于任何答案我们都可 ...
- P和NP问题
1. 通俗详细地讲解什么是P和NP问题 http://blog.sciencenet.cn/blog-327757-531546.html NP----非定常多项式(英语:non-determin ...
随机推荐
- Bootstrap~学习笔记索引
回到占占推荐博客索引 bootstrap已经用了有段时间了,感觉在使用上还是比较容易接受的,在开发人员用起来上,也还好,不用考虑它的兼容性,手机,平台,PC都可以有效的兼容. bootstrap官方a ...
- Fiddler调式使用知多少(一)深入研究
Fiddler调式使用(一)深入研究 阅读目录 Fiddler的基本概念 如何安装Fiddler 了解下Fiddler用户界面 理解不同图标和颜色的含义 web session的常用的快捷键 了解we ...
- css绝对定位如何在不同分辨率下的电脑正常显示定位位置?
有时候我们在写页面中,会发现绝对定位的父级元素已经相对定位了,但是在不同分辨率的电脑下,绝对定位还是会错乱,似乎父级的相对定位并没有起了作用. 首先要明白如下几个原理: 1.笔记本电脑的分辨率一般为1 ...
- SSISDB3:Environments 和 Environment Variables
Environment 是ETL执行时使用的Parameters的集合,可以为一个Project引用不同的Environment variables,从而改变ETL执行的属性. 查看Environme ...
- Utility1:Overview
Utility 是利用,使用的意思,utilization是指使用效率,利用率的意思. SQL Sever 内置 Utility Feature,便于集中监控Server关键资源(CPU和Disk)的 ...
- LINQ系列:LINQ to SQL Concat/Union
1. Concat 单列Concat var expr = (from p in context.Products select p.ProductName) .Concat( from c in c ...
- 【Win 10应用开发】认识一下UAP项目
Windows 10 SDK预览版需要10030以上版本号的Win 10预览版系统才能使用.之前我安装的9926的系统,然后安装VS 2015 CTP 6,再装Win 10 SDK,但是在新建项目后, ...
- Jetstrap 在线构建 Bootstrap 的工具
Jetstrap 是一个 100% 基于 Web 的 Twitter Bootstrap 构建工具,无需下载软件,只需登录并构建即可.并且别人可以访问你构建的产品.
- vue小总结
以下是我在使用vue过程中自己对vue的一些小总结,希望对学习vue的亲们能有所帮助: 1. http的post请求: this.$http({url: '/someUrl', method: ' ...
- 理解DOM事件流的三个阶段
本文主要解决两个问题: 1.什么是事件流 2.DOM事件流的三个阶段 事件流之事件冒泡与事件捕获 在浏览器发展的过程中,开发团队遇到了一个问题.那就是页面中的哪一部分拥有特定的事件? 可以想象画在一张 ...