Frogs

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1509    Accepted Submission(s): 498

Problem Description
There are m stones lying on a circle, and n frogs are jumping over them.
The stones are numbered from 0 to m−1 and the frogs are numbered from 1 to n. The i-th frog can jump over exactly ai stones in a single step, which means from stone j mod m to stone (j+ai) mod m (since all stones lie on a circle).

All frogs start their jump at stone 0, then each of them can jump as many steps as he wants. A frog will occupy a stone when he reach it, and he will keep jumping to occupy as much stones as possible. A stone is still considered ``occupied" after a frog jumped away.
They would like to know which stones can be occupied by at least one of them. Since there may be too many stones, the frogs only want to know the sum of those stones' identifiers.

 
Input
There are multiple test cases (no more than 20), and the first line contains an integer t,
meaning the total number of test cases.

For each test case, the first line contains two positive integer n and m - the number of frogs and stones respectively (1≤n≤104, 1≤m≤109).

The second line contains n integers a1,a2,⋯,an, where ai denotes step length of the i-th frog (1≤ai≤109).

 
Output
For each test case, you should print first the identifier of the test case and then the sum of all occupied stones' identifiers.
 
Sample Input
3
2 12
9 10
3 60
22 33 66
9 96
81 40 48 32 64 16 96 42 72
 
Sample Output
Case #1: 42
Case #2: 1170
Case #3: 1872
 
Source
题意:有n只青蛙,m个石头(围成圆圈)。第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少?
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cmath>
#include <map>
#include <bitset>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <set>
#define MM(a,b) memset(a,b,sizeof(a));
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
#define CT continue
#define SC scanf
const int N=2*1e5+10;
int factor[N],num[N],appear[N],step[N];
ll add[N]; int gcd(int a,int b)
{
if(b==0) return a;
else return gcd(b,a%b);
} int main()
{
int cas,n,m,kk=0;
SC("%d",&cas);
while(cas--){
SC("%d%d",&n,&m);
int cnt=0;MM(num,0);MM(appear,0);
for(int i=1;i<=n;i++) SC("%d",&step[i]);
for(int i=1;i*i<=m;i++) if(m%i==0){
factor[++cnt]=i;
if(i*i!=m) factor[++cnt]=m/i;
}
sort(factor+1,factor+cnt+1);
cnt--;
for(int i=1;i<=cnt;i++){
ll k=(m-1)/factor[i];
add[i]=k*(k+1)/2*factor[i];
} for(int i=1;i<=n;i++){
int k=gcd(step[i],m);
for(int j=1;j<=cnt;j++)
if(factor[j]%k==0) appear[j]=1;
} ll ans=0;
for(int i=1;i<=cnt;i++) if(num[i]!=appear[i]){
ans+=add[i]*(appear[i]-num[i]);
for(int j=i+1;j<=cnt;j++)
if(factor[j]%factor[i]==0) num[j]+=(appear[i]-num[i]);
}
printf("Case #%d: %lld\n",++kk,ans);
}
return 0;
}

  分析:

1.一个数的因子个数大概是log级别;

2.ax+by=c有非负整数解的条件是c%gcd(a,b);取余

=>ax+by=k*gcd(a,b) =>ax%b=k*gcd(a,b)%b =>ai*x%m=k*gcd(ai,m)%m;

所以,青蛙能走到的格子数是k*gcd(ai,m),而gcd(ai,m)又必然是m的因数,所以可以先分解出m的因子

3.但是因为有些格子可能同时被多只青蛙走,因此需要容斥一下,设appear[i]为格子i应该走的次数(只有0,1)两个值,num[i]为格子i到当前为止实际走的次数,如果当前appear[i]>appear[i],就需要加,否则减去,然后将是当前因子factor[i]倍数的因子也同时跟新num值

hdu 5514 Frogs 容斥思想+gcd 银牌题的更多相关文章

  1. hdu 5514 Frogs(容斥)

    Frogs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  2. HDU 5514 Frogs 容斥定理

    Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...

  3. ACM-ICPC 2015 沈阳赛区现场赛 F. Frogs && HDU 5514(容斥)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意:有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过xi个石子.问所 ...

  4. HDU 5213 分块 容斥

    给出n个数,给出m个询问,询问 区间[l,r] [u,v],在两个区间内分别取一个数,两个的和为k的对数数量. $k<=2*N$,$n <= 30000$ 发现可以容斥简化一个询问.一个询 ...

  5. HDU 2588 思维 容斥

    求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...

  6. 很好的容斥思想 HDU 5514

    题目描述:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条a[i]个石头,问最后所有青蛙跳过的石头的下标总和是多少? 思路:经过绘图我们发现,每次跳过的位置一定是k*gcd(a[i], m).然 ...

  7. HDU 5514 Frogs (容斥原理)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=5514 题意 : 有m个石子围成一圈, 有n只青蛙从跳石子, 都从0号石子开始, 每只能越过a[i] ...

  8. HDU 5514 Frogs(容斥原理)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5514 [题目大意] m个石子围成一圈,标号为0~m-1,现在有n只青蛙,每只每次跳a[i]个石子, ...

  9. HDU 5514 Frogs

    Frogs Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 5514 ...

随机推荐

  1. selenium弹框元素定位-冻结界面

    有些网站上面的元素,我们鼠标放在上面,会动态弹出一些内容. 比如,百度首页的右上角,有个更多产品选项,如下图所示: 如果我们把鼠标放在上边,就会弹出下面的百度营销.音乐.图片等图标. 如果我们要用se ...

  2. Get HttpWebResponse and HttpClient Return String by proxy

    #region Get HttpClient Return String /// <summary> /// Get HttpClient Return String /// </s ...

  3. 谈谈对Spring IOC的理解(转发)

    学习过Spring框架的人一定都会听过Spring的IoC(控制反转) .DI(依赖注入)这两个概念,对于初学Spring的人来说,总觉得IoC .DI这两个概念是模糊不清的,是很难理解的,今天和大家 ...

  4. Angular 变更检测

    angular 的钩子函数有 content 和 view , Docheck 子控件中有属性变化的时候,父组件的 Docheck  content   view  这3个会依次执行,即使这个属性不在 ...

  5. ubuntu14 vim编译

    (1) ./configure --prefix=/usr (2) make VIMRCLOC=/etc/vim VIMRUNTIMEDIR=/usr/share/vim/vim74 MAKE=&qu ...

  6. [NOIP10.3模拟赛]3.w题解--神奇树形DP

    题目链接: 咕 闲扯: 这题考场上把子任务都敲满了,5个namespace,400行11k 结果爆0了哈哈,因为写了个假快读只能读入一位数,所以手测数据都过了,交上去全TLE了 把边分成三类:0. 需 ...

  7. asp.net mvc 导出Excel

    [HttpGet] public void ExportNissan(string CheckListNo) { JObject queryParam; if (CheckListNo == null ...

  8. xss part2

    0x01 xss challenge level 6-10 1.1 level 6 test with typical, notice the script has changed change sc ...

  9. 处理器拦截器(HandlerInterceptor)详解(转)

    简介 SpringWebMVC的处理器拦截器,类似于Servlet开发中的过滤器Filter,用于处理器进行预处理和后处理. 应用场景 1.日志记录,可以记录请求信息的日志,以便进行信息监控.信息统计 ...

  10. JPA的入门案例

    1.1    需求介绍 本章节我们是实现的功能是保存一个客户到数据库的客户表中. 1.2    开发包介绍 由于JPA是sun公司制定的API规范,所以我们不需要导入额外的JPA相关的jar包,只需要 ...