洛谷 P2939 [USACO09FEB]改造路Revamping Trails
题意翻译
约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体.
通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 速公路.在高速公路上的通行几乎是瞬间完成的,所以高速公路的通行时间为0.
请帮助约翰决定对哪些小径进行升级,使他每天从1号牧场到第N号牧场所花的时间最短
题目描述
Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= 50,000) trails conveniently numbered 1..M from pasture 1 all the way out to pasture N (a journey which is always possible for trail maps given in the test data). The N (1 <= N <= 10,000) pastures conveniently numbered 1..N on Farmer John's farm are currently connected by bidirectional dirt trails. Each trail i connects pastures P1_i and P2_i (1 <= P1_i <= N; 1 <= P2_i <= N) and requires T_i (1 <= T_i <= 1,000,000) units of time to traverse.
He wants to revamp some of the trails on his farm to save time on his long journey. Specifically, he will choose K (1 <= K <= 20) trails to turn into highways, which will effectively reduce the trail's traversal time to 0. Help FJ decide which trails to revamp to minimize the resulting time of getting from pasture 1 to N.
TIME LIMIT: 2 seconds
输入输出格式
输入格式:
* Line 1: Three space-separated integers: N, M, and K
* Lines 2..M+1: Line i+1 describes trail i with three space-separated integers: P1_i, P2_i, and T_i
输出格式:
* Line 1: The length of the shortest path after revamping no more than K edges
输入输出样例
输入样例#1:
4 4 1
1 2 10
2 4 10
1 3 1
3 4 100
输出样例#1:
1
说明
K is 1; revamp trail 3->4 to take time 0 instead of 100. The new shortest path is 1->3->4, total traversal time now 1.
解题报告
题意理解
就是让你从\(1\)走到\(N\),然后要求路上路径最小,且你可以让\(K\)条路的路径为0.
解题思路
首先我们一眼就可以确定这道题目是的最短路算法.毕竟题目上白纸黑字上写着要,求出最短路.
首先我们一步步分析一下,这道题目的几个关键点.
- 这道题目的路径代价是什么?
我们发现,这里的路径不同于一般的最短路,每一条路径的最大边是这条路径的最小值
- 题目中有些路径可以清零,这怎么办?
所有关于边的条件或者性质,其实都可以认为是一种特殊边.
这道题目中,有些边可以代价为0,那么我们不妨设置一种特殊边.
比如说\((a,b)\)是相连的边,他们代价是\(c\),那么如果说我们让它免费,不就是又多了一条边,\((a,b)\),只不过他们的代价是0?
所谓的路径可以免费,就是多了一条为0的重边.
所以这道题目的性质,转换一下就是,我们可以设置K条为权值0的边.
所以我们可以设置一个数组\(d[x,p]\)表示从1号节点到\(x\)号节点,途中经过\(p\)条权值为0的边,
- 新加入的边是非0边.
那么我们面对每一条新加入的边\((x,y,z)\)我们的\(d[y,p]=max(d[x,p],z)\),其中\(z\)为\((x,y)\)权值.
- 新加入的边是0边.
如果新加入的边是权值为0的边,显然是\(d[y,p+1]=d[x,p]\).
代码解释
//82分代码,SPFA他死了
#include <bits/stdc++.h>
using namespace std;
const int N=50000*3+100;
const int M=11000;
int tot,n,m,k,ver[N],Next[N],head[N],edge[N];
long long dis[M][30];
bool vis[M];
queue<int> q;
void spfa(int s)
{
memset(dis,0x3f,sizeof(dis));
memset(vis,false,sizeof(vis));
dis[s][0]=0;
vis[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
vis[x]=0;
for (int i=head[x]; i ; i=Next[i])
{
int j=edge[i],z=ver[i];
long long w=dis[x][0]+z;
if (dis[j][0]>w)
{
dis[j][0]=w;
if(!vis[j])
q.push(j),vis[j]=1;
}
for(int p=1; p<=k; p++)
{
long long w=min(dis[x][p-1],dis[x][p]+z);
if (dis[j][p]>w)
{
dis[j][p]=w;
if(!vis[j])
q.push(j),vis[j]=1;
}
}
}
}
}
void add(int a,int b,int c)
{
edge[++tot]=b;
ver[tot]=c;
Next[tot]=head[a];
head[a]=tot;
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1; i<=m; i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
add(b,a,c);
}
spfa(1);
long long ans=1e15;
for(int i=0; i<=k; i++)
ans=min(ans,dis[n][i]);
if (ans==1e15)
printf("-1");
else
printf("%lld",ans);
return 0;
}
其实Dijskra就可以Ac.
// luogu-judger-enable-o2
#include<bits/stdc++.h>
const int MAXN=1e4+20;
const int MAXM=1e5+20;
using namespace std;
typedef pair<int,int>P;
vector<P> g[MAXN];
long long dis[MAXN][22];
int n,m,k;
struct node
{
int v,num;
long long w;
node() {}
node(int a,int b,long long c)
{
v=a;
num=b;
w=c;
}
bool operator>(const node&cmp)const
{
return w>cmp.w;
}
};
priority_queue<node,vector<node>,greater<node> >q;
void dijskra()
{
for(int i=1; i<=n; i++)
for(int j=0; j<=k; j++)
dis[i][j]=0x3f3f3f3f;
dis[1][0]=0;
q.push(node(1,0,0));
while(!q.empty())
{
node tmp=q.top();
q.pop();
int u=tmp.v;
int num=tmp.num;
long long w=tmp.w;
for(int i=0; i<g[u].size(); i++)
{
int v=g[u][i].first;
long long tw=g[u][i].second;
if(num<k && w<dis[v][num+1])
{
dis[v][num+1]=w;
q.push(node(v,num+1,w));
}
if(w+tw<dis[v][num])
{
dis[v][num]=w+tw;
q.push(node(v,num,w+tw));
}
}
}
long long ans=dis[n][0];
for(int i=1; i<=k; i++)
ans=min(ans,dis[n][i]);
printf("%lld\n",ans);
}
int main()
{
// freopen("stdin.in","r",stdin);
int u,v,w;
scanf("%d%d%d",&n,&m,&k);
for(int i=0; i<m; i++)
{
scanf("%d%d%d",&u,&v,&w);
g[u].push_back(make_pair(v,w));
g[v].push_back(make_pair(u,w));
}
dijskra();
return 0;
}
洛谷 P2939 [USACO09FEB]改造路Revamping Trails的更多相关文章
- 洛谷 P2939 [USACO09FEB]改造路Revamping Trails 题解
P2939 [USACO09FEB]改造路Revamping Trails 题目描述 Farmer John dutifully checks on the cows every day. He tr ...
- 洛谷P2939 [USACO09FEB]改造路Revamping Trails
题意翻译 约翰一共有\(N\))个牧场.由\(M\)条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场\(1\)出发到牧场\(N\)去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰 ...
- 洛谷P2939 [USACO09FEB]改造路Revamping Trails(最短路)
题目描述 Farmer John dutifully checks on the cows every day. He traverses some of the M (1 <= M <= ...
- P2939 [USACO09FEB]改造路Revamping Trails
P2939 [USACO09FEB]改造路Revamping Trails 同bzoj2763.不过dbzoj太慢了,bzoj又交不了. 裸的分层图最短路. f[i][j]表示免费走了j条路到达i的最 ...
- LUOGU P2939 [USACO09FEB]改造路Revamping Trails
题意翻译 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小径,使之成为高 ...
- 【luogu P2939 [USACO09FEB]改造路Revamping Trails】 题解
题目链接:https://www.luogu.org/problemnew/show/P2939 本来说是双倍经验题,跟飞行路线一样的,结果我飞行路线拿deque优化SPFA过了这里过不了了. 所以多 ...
- P2939 [USACO09FEB]改造路Revamping Trails(分层图最短路)
传送门 完了我好像连分层图最短路都不会了……果然还是太菜了…… 具体来说就是记录一个步数表示免费了几条边,在dijkstra的时候以步数为第一关键字,距离为第二关键字.枚举边的时候分别枚举免不免费下一 ...
- [USACO09FEB] 改造路Revamping Trails | [JLOI2011] 飞行路线
题目链接: 改造路 飞行路线 其实这两道题基本上是一样的,就是分层图的套路题. 为什么是分层图呢?首先,我们的选择次数比较少,可以把这几层的图建出来而不会爆空间.然后因为选择一个边权为0的路线之后我们 ...
- 分层图【p2939】[USACO09FEB]改造路Revamping Trails
Description 约翰一共有N)个牧场.由M条布满尘埃的小径连接.小径可 以双向通行.每天早上约翰从牧场1出发到牧场N去给奶牛检查身体. 通过每条小径都需要消耗一定的时间.约翰打算升级其中K条小 ...
随机推荐
- HTML基础知识自学教程
HTML 是用来描述网页的一套标记标签,是我们在web前端开发中的基础.下面PHP程序员雷雪松主要结合自己的经验给大家分享下HTML的基础知识,以及在自学过程中一些比较常用的和重要的HTML知识点. ...
- 华三F100系列防火墙 、华为USG6300系列防火 GRE 隧道配置
GRE概述: 通用路由封装(GRE: Generic Routing Encapsulation)是通用路由封装协议,可以对某些网络层协议的数据报进行封装,使这些被封装的数据报能够在IPV4网络中传输 ...
- layui select 联动渲染赋值不了数据的问题
今天用 layui做select的时候,数据老是看不到,而且联动的数据是对不上的,看了网上一堆是 最后要用 form.render('select'); 这个是必须的, 但是我用了还是这样,其实是la ...
- XML中不能识别&符号, 需要转义吗?
“&”在XML中是具有特殊含义的,是转义字符的前缀,如果要想用这个字符就需要转义.遇到“&”就替换成“&”就好了; xml所有转义符 和 & & 大于 ...
- 第十三章 字符串 (四)之Scanner类
一.Scanner简述 Scanner扫描器类本质上是由正则表达式实现的,可以接受任何能产生数据的数据源对象,默认以空白符进行分词(包括\n等),使用各种next方法进行扫描匹配,获取匹配的数据. 二 ...
- XXLJOB2.1.0数据源配置踩坑记录
最近在看XXLJOB,因为截至到发文时间最新的版本是2.1.0而且需要建立的数据库与Quartz解耦了,所以就用了最新的版本. 首先说一下踩坑过程: 代码开发完成之后,在定时跑的时候第一次跑的多数失败 ...
- FZU2275 Game(kmp
暑假wa的题了,,,看见vj的attempt痕迹打算挨个补了,简单kmp题,判断bob的串是不是全为0或者是alice的字串就好了 #include<algorithm> #include ...
- centos7搭建NFS服务
服务器端 139.155.90.78 客户端 192.168.198.146 先查看自己的系统有没有安装rpcbind 和nfs-utils rpm -qa nfs-utils rpcbind 若使 ...
- Fiddler之WebFroms的中文乱码问题
乱码问题:修改注册表 1.windows+R ,输入regedit ,按enter键 2.进入这个目录:HKEY_CURRENT_USER\Software\Microsoft\Fiddler2 3. ...
- Win32汇编常用系统函数
汇编语言(assembly language)是一种用于电子计算机.微处理器.微控制器或其他可编程器件的低级语言,亦称为符号语言.在汇编语言中,用助记符(Mnemonics)代替机器指令的操作码,用地 ...