洛谷 P3382 【模板】三分法(三分 二分)
P3382 【模板】三分法
题目提供者HansBug
难度 普及/提高-
题目描述
如题,给出一个N次函数,保证在范围[l,r]内存在一点x,使得[l,x]上单调增,[x,r]上单调减。试求出x的值。
![]()
输入输出格式
输入格式:
第一行一次包含一个正整数N和两个实数l、r,含义如题目描述所示。
第二行包含N+1个实数,从高到低依次表示该N次函数各项的系数。
输出格式:
输出为一行,包含一个实数,即为x的值。四舍五入保留5位小数。
输入输出样例
输入样例#1:
3 -0.9981 0.5
1 -3 -3 1
输出样例#1:
-0.41421
说明
时空限制:50ms,128M
数据规模:
对于100%的数据:7<=N<=13
样例说明:
如图所示,红色段即为该函数f(x)=x^3-3x^2-3x+1在区间[-0.9981,0.5]上的图像。
当x=-0.41421时图像位于最高点,故此时函数在[l,x]上单调增,[x,r]上单调减,故x=-0.41421,输出-0.41421。
/*
三分答案做法.
又学了一种三分答案姿势.
mid=(2*l+r)/3,midmid=(l+2*r)/3.
常数要小很多...
(并不会证明).
*/
#include<cstdio>
#define MAXN 101
#define eps 1e-7
using namespace std;
double a[MAXN],ans,l,r;
int n;
double check(double x)
{
double sum=0;
for(int i=1;i<=n;i++)
{
double tot=a[i];
for(int j=1;j<=n-i;j++) tot*=x;
sum+=tot;
}
return sum;
}
void sanfen()
{
double mid,midmid;
while(l+eps<r)
{
//mid=(l+r)/2,midmid=(mid+r)/2;
mid=(2*l+r)/3,midmid=(l+2*r)/3;
if(check(mid)>=check(midmid)) r=midmid,ans=mid;
else l=mid;
}
printf("%.5f",ans);
return ;
}
int main()
{
scanf("%d",&n);
scanf("%lf%lf",&l,&r);n++;
for(int i=1;i<=n;i++) scanf("%lf",&a[i]);
sanfen();
return 0;
}
/*
二分答案.
对函数求导,找f`(x)=0的点.
感觉这题数据应该都是单峰函数.
so 这个方法就ok了.
其实应该还要判断该点两侧导函数是否变号
还有带入端点值比较啥的.
懒没写~.
重要的是昨天刚预习的高二导数求凸形函数
今天就用上了 先让我笑一会儿哈哈哈哈哈哈哈.
*/
#include<iostream>
#include<cstdio>
#define eps 1e-7
#define MAXN 101
using namespace std;
double a[MAXN],ans,l,r;
int n;
double check(double x)
{
double sum=0;
for(int i=1;i<=n;i++)
{
double tot=a[i]*(n-i+1);
for(int j=1;j<=n-i;j++) tot*=x;
sum+=tot;
}
return sum;
}
void erfen()
{
double mid;
while(l+eps<r)
{
mid=(l+r)/2;
if(check(mid)<=0) r=mid,ans=mid;
else l=mid;
}
printf("%.5f",ans);
return ;
}
int main()
{
scanf("%d",&n);
scanf("%lf%lf",&l,&r);n++;
for(int i=1;i<=n;i++) scanf("%lf",&a[i]);n--;
erfen();
return 0;
}
洛谷 P3382 【模板】三分法(三分 二分)的更多相关文章
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- [CodePlus 2017 11月赛&洛谷P4058]木材 题解(二分答案)
[CodePlus 2017 11月赛&洛谷P4058]木材 Description 有 n棵树,初始时每棵树的高度为 Hi ,第 i棵树每月都会长高 Ai.现在有个木料长度总量为 S的订单, ...
- 洛谷 P1083 借教室【二分+差分/线段树】
二分mid,然后用1~mid的操作在差分序列上加减,最后把差分序列前缀和起来,看是否有有超过初始r值的 #include<iostream> #include<cstdio> ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
- 洛谷-P5357-【模板】AC自动机(二次加强版)
题目传送门 -------------------------------------- 过年在家无聊补一下这周做的几道AC自动机的模板题 sol:AC自动机,还是要解决跳fail边产生的重复访问,但 ...
- 洛谷P1462-通往奥格瑞玛的道路-二分+最短路
洛谷P1462-通往奥格瑞玛的道路 题目描述 在艾泽拉斯,有\(n\)个城市.编号为\(1,2,3,...,n\). 城市之间有\(m\)条双向的公路,连接着两个城市,从某个城市到另一个城市,会遭到联 ...
- LOJ 2555 & 洛谷 P4602 [CTSC2018]混合果汁(二分+主席树)
LOJ 题目链接 & 洛谷题目链接 题意:商店里有 \(n\) 杯果汁,第 \(i\) 杯果汁有美味度 \(d_i\),单价为 \(p_i\) 元/升.最多可以添加 \(l_i\) 升.有 \ ...
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
随机推荐
- Struts2简介、初步使用
今日分享的是楼楼新学的一个框架,Struts2: 一:Struts2简介: Struts2是一个基于MVC设计模式的Web应用框架,它本质上相当于一个servlet,在MVC设计模式中,Struts2 ...
- 小程序文案过长,‘收起/展开’文字,createSelectorQuery 获取节点成功,boundingClientRect 返回信息null
问题描述: wxml中id是动态生成的. 获取节点信息是在onReady生命周期函数内延时500ms执行的,select(id)可以获取全部节点信息,boundingClientRect (rect) ...
- Asp.net core 学习笔记 ( ef core transaction scope & change level )
ef core 有 unit of work 的概念,当我们 save change 时会自动使用 transaction 确保更新的一致性. 隔离级别是默认的 read committed 不允许脏 ...
- 使用jdk8 stream简化集合操作
使用stream的前提是对lambda表达式和函数式接口有一定的了解,同时对方法引用和普通传参的区别有一定的认识. stream的三大特性:1.不存储数据2.不改变源数据3.延时执行. stream优 ...
- XCode下在不同位置声明变量的用法(转)
XCode下在不同位置声明变量的用法 方式一:直接在.h文件@interface中的大括号中声明. @interface Test : NSObject { NSString *str; // 私有变 ...
- 4.解析配置文件 redis.conf
将原始的redis.conf拷贝,得到一个myRedis.conf文件,修改配置文件时,就修改这个文件,不对原始的配置文件进行修改 redis配置文件中主要有以下内容: 1.units单位 a)配置大 ...
- Spring中Bean的管理问题
首先,配置文件中定义的bean并不是都在启动时实例化. <bean id="accountService" class="com.foo.DefaultAccoun ...
- NUC970 Linux CAN 驱动问题及解决办法之一
开发平台介绍: NUC970 + 内置CAN控制器(双通道CAN1\CAN2) + 官方Linux_Kernel(少量修改) 名词: 版本A,问题及修改涉及两个版本,其中最旧版本称为版本A 版本B,问 ...
- 如何实现数组和 List 之间的转换?(未完成)
如何实现数组和 List 之间的转换?(未完成)
- maven常用命令参数
整理了一些maven常用命令参数,以便参考:参考了maven官网和网上其他一些maven追随者的文件,不在此一一列举,但表示感谢! mvn命令参数 mvn -v, --version 显示版本信息; ...