tsp问题-遍历算法/随机算法
旅行商问题,即TSP问题(Traveling Salesman Problem)又译为旅行推销员问题、货郎担问题,是数学领域中著名问题之一。假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有路径之中的最小值。
#!/user/bin/env python
# -*- coding:utf-8 -*- # TSP旅行商问题:若干个城市,任意两个城市之间距离确定,要求一旅行商从某城市
# 出发必须经过每一个城市且只能在每个城市逗留一次,最后回到原出发城市,试
# 确定一条最短路径使旅行费用最少 # 遍历算法 # 给定某条路径,计算它的成本
def distcal(path, dist):
# 计算路径成本(路径,距离)
sum_dist = 0 # 总成本
for j in range(0, len(path) - 1):
di = dist[int(path[j]) - 1][int(path[j + 1]) - 1] # 查找第j和j+1个城市之间的成本
sum_dist = sum_dist + di # 累加
di = dist[int(path[len(path) - 1]) - 1][path[0] - 1] # 最后一个城市回到初始城市的成本
sum_dist = sum_dist + di
return sum_dist # 返回路径的成本 # 递归,构造所有可能路径
def perm(l): # 构造路径(城市列表)
if (len(l)) <= 1: # 只有一个城市,选择这个城市
return [l]
r = [] # 空列表
for i in range(len(l)): # 对每个城市,构建不包括这个城市的所有可能序列
s = l[:i] + l[i + 1:] # 去除当前城市的列表
p = perm(s) # 调用自身,构造不包含这个城市的序列
for x in p:
r.append(l[i:i + 1] + x) # 将序列和该城市合并,得到完整的序列
return r if __name__ == '__main__':
city = [1, 2, 3, 4, 5] dist = ((0, 1, 3, 4, 5),
(1, 0, 1, 2, 3),
(3, 1, 0, 1, 2),
(4, 2, 1, 0, 1),
(5, 3, 2, 1, 0)) for i in range(0, 5):
print(dist[i][:]) print('=============') allpath = perm(city) # 调用路径产生函数,产生所有可能的路径 optimal = 1000000 # 初始化最优路径的总成本和索引号 index = 1 for i in range(0, len(allpath)):
pd = distcal(allpath[i], dist)
if pd < optimal: # 比较是否总成本更低,如果是替换最优解
optimal = pd
index = i
# print(pd) print(optimal)
print(allpath[index])
------------------------------------------------------------------------
(0, 1, 3, 4, 5)
(1, 0, 1, 2, 3)
(3, 1, 0, 1, 2)
(4, 2, 1, 0, 1)
(5, 3, 2, 1, 0)
=============
9
[1, 2, 3, 4, 5]
遍历算法
#!/user/bin/env python
# -*- coding:utf-8 -*- import random # 给定某条路径,计算它的成本
def distcal(path, dist):
# 计算路径成本(路径,距离)
sum_dist = 0 # 总成本
for j in range(0, len(path) - 1):
di = dist[int(path[j]) - 1][int(path[j + 1]) - 1] # 查找第j和j+1个城市之间的成本
sum_dist = sum_dist + di # 累加
di = dist[int(path[len(path) - 1]) - 1][path[0] - 1] # 最后一个城市回到初始城市的成本
sum_dist = sum_dist + di
return sum_dist # 返回路径的成本 # 构造随机路径
def randompath(inc): # Inc城市列表
allcity = inc[:] # 城市列表
path = [] # 路径
loop = True
while loop:
if 1 == len(allcity): # 如果是最后一个城市
tmp = random.choice(allcity)
path.append(tmp)
loop = False # 结束
else: # 如果不是最后一个城市
tmp = random.choice(allcity) # 在城市列表中随机选择一个城市
path.append(tmp) # 添加路径
allcity.remove(tmp) # 在城市列表中移除该城市
return path if __name__ == '__main__':
city = [1, 2, 3, 4, 5] dist = ((0, 1, 3, 4, 5),
(1, 0, 1, 2, 3),
(3, 1, 0, 1, 2),
(4, 2, 1, 0, 1),
(5, 3, 2, 1, 0)) for i in range(0, 5):
print(dist[i][:]) print('=============') num = 10 # 随机产生10条路径 optimal = 1000000 # 初始化最优路径的总成本和索引号 for i in range(0, num):
pd = distcal(randompath(city), dist)
if pd < optimal: # 比较是否总成本更低,如果是替换最优解
optimal = pd
print(pd) print(optimal)
------------------------------------------------------------
(0, 1, 3, 4, 5)
(1, 0, 1, 2, 3)
(3, 1, 0, 1, 2)
(4, 2, 1, 0, 1)
(5, 3, 2, 1, 0)
=============
9
12
11
14
12
11
14
9
14
9
最优: 9
随机算法
tsp问题-遍历算法/随机算法的更多相关文章
- random array & shuffle 洗牌算法 / 随机算法
random array & shuffle shuffle 洗牌算法 / 随机算法 https://en.wikipedia.org/wiki/Fisher–Yates_shuffle ES ...
- 模拟退火算法SA原理及python、java、php、c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思 ...
- 权重随机算法的java实现
一.概述 平时,经常会遇到权重随机算法,从不同权重的N个元素中随机选择一个,并使得总体选择结果是按照权重分布的.如广告投放.负载均衡等. 如有4个元素A.B.C.D,权重分别为1.2.3.4,随机结果 ...
- python的random模块及加权随机算法的python实现
random是用于生成随机数的,我们可以利用它随机生成数字或者选择字符串. random.seed(x)改变随机数生成器的种子seed. 一般不必特别去设定seed,Python会自动选择seed. ...
- ACO 蚁群算法(算法流程,TSP例子解析)
算法 计算机 超级计算 高性能 科学探索 1. 算法背景——蚁群的自组织行为特征 高度结构化的组织——虽然蚂蚁的个体行为极其简单,但由个体组成的蚁群却构成高度结构化的社会组织,蚂蚁社会的成员有分工,有 ...
- 【Warrior刷题笔记】力扣169. 多数元素 【排序 || 哈希 || 随机算法 || 摩尔投票法】详细注释 不断优化 极致压榨
题目 来源:力扣(LeetCode) 链接:https://leetcode-cn.com/problems/majority-element/ 注意,该题在LC中被标注为easy,所以我们更多应该关 ...
- 微信红包中使用的技术:AA收款+随机算法
除夕夜你领到红包了吗?有的说“我领了好几K!”“我领了几W!” 土豪何其多,苦逼也不少!有的说“我出来工作了,没压岁钱了,还要发红包”.那您有去抢微信红包吗?微信群中抢“新年红包”春节爆红.618微信 ...
- POJ 3318 Matrix Multiplication(随机算法)
题目链接 随机算法使劲水...srand((unsigned)time(0))比srand(NULL)靠谱很多,可能是更加随机. #include <cstdio> #include &l ...
- 抽奖随机算法的技术探讨与C#实现
一.模拟客户需求 1.1 客户A需求:要求每次都按照下图的概率随机,数量不限,每个用户只能抽一次,抽奖结果的分布与抽奖概率近似. 1.2 客户B需求:固定奖项10个,抽奖次数不限,每个用户只能抽一次, ...
随机推荐
- 【ARM-Linux开发】如何使用opkg在RicoBoard上在线安装软件包
类似于debian的apt-get,Redhat的yum类似,嵌入式Linux平台可以使用opkg实现在线安装软件包的功能,在我们提供的matrix文件系统中,已经包含了opkg工具,但是还没有配置一 ...
- webkit浏览器下改变滚动条样式
/*定义滚动条轨道 内阴影+圆角*/ ::-webkit-scrollbar-track { -webkit-box-shadow: inset 0 0 6px rgba(0,0,0,0.3); ba ...
- python 元组tuple - python基础入门(14)
在上一篇文章中我们讲解了关于python列表List的相关内容,今天给大家解释一下列表List的兄弟 – 元组,俗称: tuple. 元组tuple和列表List类似,元组有如下特点: 1.由一个或者 ...
- 【leetcode算法-中等】2. 两数相加
[题目描述] 给出两个 非空 的链表用来表示两个非负的整数.其中,它们各自的位数是按照 逆序 的方式存储的,并且它们的每个节点只能存储 一位 数字. 如果,我们将这两个数相加起来,则会返回一个新的链表 ...
- Spring使用小结
- 对快速排序的理解以及相关c++代码
快速排序:在一组数据中,可以将左边的数字当作枢轴(右边也可以),接下来要做的就是,先从右边找到比枢轴小的数, 再从左边找到比枢轴大的数,接着将这两个数进行交换,重复上述步骤找出所有符合条件的数进行交换 ...
- Django之Hook函数
Django之钩子Hook方法 局部钩子: 在Fom类中定义 clean_字段名() 方法,就能够实现对特定字段进行校验.(校验函数正常必须返回当前字段值) def clean_name(self): ...
- python学习-23 函数
函数 1.函数分为:数学定义的函数和编程语言中的函数 例如: - 数学定义的函数:y=2*x+1 - 编程语言的函数: def test(x): x += 1 return x def :定义函数的 ...
- Hibernate一对多自关联、多对多关联
今天分享hibernate框架的两个关联关系 多对多关系注意事项 一定要定义一个主控方 多对多删除 主控方直接删除 被控方先通过主控方解除多对多关系,再删除被控方 禁用级联删除 关联关系编辑,不 ...
- Mysql slave 延迟故障一列(无主键)
首先还是给出我见过的一些延迟可能: 大事物延迟 延迟略为2*执行时间 状态为:reading event from the relay log 大表DDL延迟 延迟略为1*执行时间 状态为:alter ...