​2019年,国内人工智能领域的投融资热情大幅降低,相当数量的AI企业彻底消失在了历史的长河中,“人工智能寒潮已至”甚至成为行业年度热词。

与前几年创业与投资热情齐头并进的盛况相比,近段时间的AI行业显然萧条了很多。

究其原因,“AI落地难”要负主要责任。

从自动化时代到智能化时代,人工智能创造的价值在不断增长。与此同时,业务场景的精细度与复杂度也在不断提升,为人工智能技术的落地带来一系列挑战。

以国内人工智能企业为例。目前国内几个较大的人工智能独角兽企业,商业化落地主要集中在金融、安防监控、手机移动互联网三个领域,而其他领域则表现平平。

细化到具体业务场景中,汽车自动驾驶是AI最重要的商业化落地领域,相关人工智能企业在无人驾驶/自动驾驶投入巨大,但距离大规模商业化应用依然十分遥远。

目前自动驾驶的主要应用场景无非就是路测一下、会展展示一下、无人驾驶园区试驾一下,但这些显然无法为一家以营利为目的的企业带来任何实质性的收入。

汽车自动驾驶距离大规模商用仍有一段距离

企业的长久健康生存需要盈利,AI企业同样不例外。摆在一众AI企业面前最为迫切的现实需求就是,如何破局“AI落地难”的困境。

古语有云“解铃还须系铃人”,破局AI落地难的关键,是找到何种因素导致了这种结果。

在人工智能领域,算法、算力与数据是构成行业的3大重要基础要素。长久以来, AI企业关注的重点主要集中于算法与算力领域,对于数据领域的关注度则普遍较低。

事实上,作为人工智能行业的基础,数据在AI落地的过程中所扮演的角色显然被忽视了。要把人工智能应用到具体的业务场景中,首先需要解决数据获取和数据治理等相关问题,具体到行业中就是数据标注行业需率先变革。

一张经过数据标注后的图片(图片来源:曼孚科技数据标注平台)

人工智能行业内有一个简单但很重要的共识:

数据集质量的高低直接决定最终模型质量的好坏。

在人工智能行业兴起初期,行业关注的重点主要集中于理论与技术本身,此时一种前沿的技术概念都有可能为企业带来规模庞大的外部投资。

但是,到了技术相对成熟期,投资人与AI企业关注的重点就转向了技术的商业化落地,毕竟企业与投资人最为看重的还是盈利。

然而,理论与实践的结合总是不那么一帆风顺。AI企业在商业化落地的过程中,发现了一个很棘手的问题:标注数据集的质量可以满足实验室的基本需求,但却无法支撑起AI落地的发展洪流。

我们以实例为证:

在人脸识别等单点场景,涉及到的数据类型一般比较简单。但在更完整的业务场景中,数据就会变得更加复杂起来;

工业场景中,会涉及到工业现场图像数据、工艺流程文本数据和设备运行的时序数据等更加精细化数据的标注;

医疗场景中,对医疗影像和文本的标注,需要具备医学专业知识的人员进行……

以往在实验室里仅需少量且质量尚可的数据集即可满足基本实验的需求,但是到了具体化的商业落地场景中,现实给标注数据集提出了诸多新的要求:

海量、高质量、场景化、定制化、智能化……

高质量标注数据集才能撑起人工智能行业的未来(图片来源:曼孚科技数据标注平台)

在这样的新形势下,破局AI落地难的关键,就在于数据标注行业的率先变革。

作为人工智能行业的基础,数据标注行业长期处于刀耕火种的粗放状态中,披着人工智能的外衣,但是本质上仍然属于劳动密集型产业。

在AI商业化落地的大潮下,数据标注行业不应拖了行业发展的后腿,而应该主动为人工智能行业的发展保驾护航。

以曼孚科技数据标注服务为例,一方面通过培训专业标注团队与提供定制化服务,来解决数据采集、数据标注的质量问题;另一方面,通过自研SaaS数据标注服务平台与自动化的辅助工具,来解决数据标注的效率问题,具体的努力如下:

1. 专业团队打造优质数据服务平台,服务成本降低30%以上;

2. 独立自研SaaS数据标注平台,预标注技术加持下标注效率可提升4倍以上;

3. 实时精确估算与AI辅助筛查,数据精确至99%以上;

4. 支持私有云部署,实时监测加强安全保护;

5. 定制化场景搭建,7X24小时快速技术响应。

通过以上努力,曼孚科技希望重新构建起人工智能行业发展的基石,用高质量的标注数据集破局“AI落地难”的困境,为相关人工智能企业的商业化落地之路扫清障碍。

目前,曼孚科技的标注数据集正大规模应用于自动驾驶、安防、VR/AR、无人机、新零售、AI教育、工业机器人等相关领域,曼孚科技期望用高质量的数据撑起人工智能行业新的未来!

破局AI落地难,数据标注行业需率先变革丨曼孚科技的更多相关文章

  1. AI数据标注行业面临的5大发展困局丨曼孚科技

    根据艾瑞咨询发布的行业白皮书显示,2018年中国人工智能基础数据服务市场规模为25.86亿元,预计2025年市场规模将突破113亿元,行业年复合增长率达到了23.5%.​ 作为人工智能产业的基石,数据 ...

  2. 战“疫”背后的AI身影丨曼孚科技

    近期新型冠状病毒肺炎的疫情,牵动着全国上下人民的心. 截止2月11日上午10点,全国确诊人数已达42708人,疑似病例21675人. 突发的疫情让部分地区的快速诊疗能力出现了结构性的缺失,为了打赢这场 ...

  3. 一文看懂AI深度学习丨曼孚科技

    深度学习(Deep Learning)是机器学习的一种,而机器学习是实现人工智能的必经途径. 目前大部分表现优异的AI应用都使用了深度学习技术,引领了第三次人工智能的浪潮. 一. 深度学习的概念 深度 ...

  4. 曼孚科技:数据标注,AI背后的百亿市场

    ​ 1. 两年前,来自山东农村的王磊成为了一位数据标注员.彼时的他,工作内容非常简单且枯燥:识别图片中人的性别. 然而,一段时间之后,他注意到分配给他的任务开始变得越来越复杂:从识别性别到年龄,从框选 ...

  5. 曼孚科技:“四管齐下”筑牢AI数据隐私安全防线

    谈及数据,绕不开的一个话题就是数据隐私与数据安全.随着数字化进程加快,数据安全事件频发,据Risk Based Security统计,去年国际数据泄露事件近5000起,被泄露数据近41亿条,数据造成的 ...

  6. 曼孚科技:AI算法领域常用的39个术语(下)

    算法是人工智能(AI)核心领域之一. 本文整理了算法领域常用的39个术语,希望可以帮助大家更好地理解这门学科. 本文为下半部分,上半部分见本账号上一篇文章. 19.迁移学习(Transfer Lear ...

  7. 曼孚科技:AI算法领域常用的39个术语(上)

    ​算法是人工智能(AI)核心领域之一. 本文整理了算法领域常用的39个术语,希望可以帮助大家更好地理解这门学科. 1. Attention 机制 Attention的本质是从关注全部到关注重点.将有限 ...

  8. 曼孚科技:AI自然语言处理(NLP)领域常用的16个术语

    ​自然语言处理(NLP)是人工智能领域一个十分重要的研究方向.NLP研究的是实现人与计算机之间用自然语言进行有效沟通的各种理论与方法. 本文整理了NLP领域常用的16个术语,希望可以帮助大家更好地理解 ...

  9. 曼孚科技:AI领域3种典型的深度学习算法

    ​深度学习(Deep Learning)是机器学习(Machine Learning)领域中一个新的研究方向,引领了第三次人工智能的浪潮. 本文整理了深度学习领域3种典型的算法,希望可以帮助大家更好地 ...

随机推荐

  1. 用什么库写 Python 命令行程序?看这一篇就够了

    作者:HelloGitHub-Prodesire HelloGitHub 的<讲解开源项目>系列,项目地址:https://github.com/HelloGitHub-Team/Arti ...

  2. js中 call() 和 apply() 方法的区别和用法详解

    1.定义 每个函数都包含俩个非继承而来的方法:call() 和 apply()   call 和 apply 可以用来重新定义函数的的执行环境,也就是 this 的指向:call 和 apply 都是 ...

  3. 全局对象的构造函数会在main函数之前执行?

    #include <iostream> using namespace std; class CTest { public: CTest() { cout << "构 ...

  4. 不要被C++“自动生成”所蒙骗

    http://www.cnblogs.com/fanzhidongyzby/archive/2013/01/12/2858040.html C++对象可以使用两种方式进行创建:构造函数和复制构造函数. ...

  5. 懒人必备,IntelliJ IDEA中代码一键生成

    之前有不少小伙伴问松哥微人事项目(https://github.com/lenve/vhr)使用的 MyBatis 逆向工程在哪里?其实旧版微人事当时没有使用逆向工程,是我自己手动敲出来的,当然手动敲 ...

  6. [Jinja2]本地加载html模板

    import os from jinja2 import Environment, FileSystemLoader env = Environment(loader=FileSystemLoader ...

  7. HDU 1251 统计难题 (Trie树模板题)

    题目链接:点击打开链接 Problem Description Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单 ...

  8. asp.net core系列 WebAPI 作者:懒懒的程序员一枚

    asp.net core系列 36 WebAPI 搭建详细示例一.概述1.1 创建web项目1.2 添加模型类1.3 添加数据库上下文1.4 注册上下文1.5 添加控制器1.6 添加Get方法1.7 ...

  9. 11--Java--JDBC知识梳理

    JDBC 一.概述:JDBC(java database connection),使用java语言连接数据库,是java提供一套操作数据库的接口(标准),实现对数据库的统一访问,是一个java引用应用 ...

  10. Linux gcc链接动态库出错:LIBRARY_PATH和LD_LIBRARY_PATH的区别

    昨天在自己的CentOs7.1上写makefile的时候,发现在一个C程序在编译并链接一个已生成好的lib动态库的时候出错.链接命令大概是这样的: [root@typecodes tcpmsg]# g ...