1213 - Fantasy of a Summation
If you think codes, eat codes then sometimes you may get stressed. In your dreams you may see huge codes, as I have seen once. Here is the code I saw in my dream.
#include <stdio.h>
int cases, caseno;
int n, K, MOD;
int A[1001];
int main() {
scanf("%d", &cases);
while( cases-- ) {
scanf("%d %d %d", &n, &K, &MOD);
int i, i1, i2, i3, ... , iK;
for( i = 0; i < n; i++ ) scanf("%d", &A[i]);
int res = 0;
for( i1 = 0; i1 < n; i1++ ) {
for( i2 = 0; i2 < n; i2++ ) {
for( i3 = 0; i3 < n; i3++ ) {
...
for( iK = 0; iK < n; iK++ ) {
res = ( res + A[i1] + A[i2] + ... + A[iK] ) % MOD;
}
...
}
}
}
printf("Case %d: %d\n", ++caseno, res);
}
return 0;
}
Actually the code was about: 'You are given three integers n, K, MOD and n integers: A0, A1, A2 ... An-1, you have to write K nested loops and calculate the summation of all Ai where i is the value of any nested loop variable.'
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with three integers: n (1 ≤ n ≤ 1000), K (1 ≤ K < 231), MOD (1 ≤ MOD ≤ 35000). The next line contains n non-negative integers denoting A0, A1, A2 ... An-1. Each of these integers will be fit into a 32 bit signed integer.
Output
For each case, print the case number and result of the code.
Sample Input |
Output for Sample Input |
|
2 3 1 35000 1 2 3 2 3 35000 1 2 |
Case 1: 6 Case 2: 36 |
分析:由题得, 程序执行了n^k次加法, 每次取k个数, 并且每个数出现的次数是相等的为n^k * k/n次。
|
结合律
|
((a+b) mod p + c)mod p = (a + (b+c) mod p) mod p
((a*b) mod p * c)mod p = (a * (b*c) mod p) mod p
|
|
交换律
|
(a + b) mod p = (b+a) mod p
(a × b) mod p = (b × a) mod p
|
|
分配律
|
((a +b)mod p × c) mod p = ((a × c) mod p + (b × c) mod p) mod p
(a×b) mod c=(a mod c * b mod c) mod c
(a+b) mod c=(a mod c+ b mod c) mod c
(a-b) mod c=(a mod c- b mod c) mod c
|
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
#define N 11000
int mod;
ll qpow(int a, int b)
{
if(b == 0)
return 1;
ll tmp = qpow(a, b>>1);
tmp = tmp * tmp % mod;
if(b & 1)
tmp =(ll) (tmp * (a % mod) )% mod;
return tmp;
}
int main()
{
int T, cas;
int n, k;
int num[N];
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
scanf("%d%d%d", &n, &k, &mod);
ll sum = 0;
for(int i = 0; i < n; i++)
{
scanf("%d", &num[i]);
sum = (sum + num[i] % mod) % mod;
}
ll ans = qpow(n, k-1);
ll cnt = (ans % mod * k % mod * sum % mod) % mod;
printf("Case %d: %lld\n", cas, cnt);
}
return 0;
}
1213 - Fantasy of a Summation的更多相关文章
- LightOJ 1213 Fantasy of a Summation(规律 + 快数幂)
http://lightoj.com/volume_showproblem.php?problem=1213 Fantasy of a Summation Time Limit:2000MS ...
- 好的计数思想-LightOj 1213 - Fantasy of a Summation
https://www.cnblogs.com/zhengguiping--9876/p/6015019.html LightOj 1213 - Fantasy of a Summation(推公式 ...
- LightOj 1213 - Fantasy of a Summation(推公式 快速幂)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1213 #include <stdio.h> int cases, case ...
- LightOJ1213 Fantasy of a Summation —— 快速幂
题目链接:https://vjudge.net/problem/LightOJ-1213 1213 - Fantasy of a Summation PDF (English) Statisti ...
- Fantasy of a Summation n个数,k层重复遍历相加。求它的和%mod的值;推导公式+快速幂
/** 题目:Fantasy of a Summation 链接:https://vjudge.net/contest/154246#problem/L 题意:n个数,k层重复遍历相加.求它的和%mo ...
- Fantasy of a Summation (LightOJ - 1213)(快速幂+简单思维)
题解:根据题目给的程序,就是计算给的这个序列,进行k次到n的循环,每个数需要加的次数是k*n^(k-1),所以快速幂取模,算计一下就可以了. #include <bits/stdc++.h> ...
- Fantasy of a Summation LightOJ - 1213 (快速幂)
题意: 首先 只看第一层循环的A[0],是不是用了nk-1次 A[1]也是用了nk-1次······ 所以 第一层的sum(A[i]的和) 一共用了nk-1 所以第一层为sum * nk-1 因为又 ...
- [kuangbin带你飞]专题十四 数论基础
ID Origin Title 111 / 423 Problem A LightOJ 1370 Bi-shoe and Phi-shoe 21 / 74 Problem B ...
- KUANGBIN带你飞
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题 //201 ...
随机推荐
- 通过例子进阶学习C++(七)CMake项目通过模板库实现约瑟夫环
本文是通过例子学习C++的第七篇,通过这个例子可以快速入门c++相关的语法. 1.问题描述 回顾一下约瑟夫环问题:n 个人围坐在一个圆桌周围,现在从第 s 个人开始报数,数到第 m 个人,让他出局:然 ...
- <s:select>自动加标签
在使用<s:select>标签时,发现页面位置不对,查看页面源码发现 <tr> <td class="tdLabel"></td> ...
- C++数值计算
1.序 (1)程序设计分两种: 1.结构化设计(面向过程)——分解算法为模块,将算法的步骤分解为模块. 2.面向对象程序设计——主要是“类”与“对象”. (2)进制的转换 1.二进制转十进制 整数部分 ...
- 用PHP写下HELLO WORLD!
一.选择PHP开发工具 1.phpstorm最新版本 2.打开phpstorm界面 按create键,选择new window ,出下如下页面: 鼠标放在文件夹上,右键单击,弹出以下对话框:做如下操作 ...
- Oracle GoldenGate Best Practices: Active-Active Configuration with DML Auto CDR
Executive Overview This document is an introduction to Oracle GoldenGate (DIPC remote agent)’s best ...
- windows命令行(终端)怎么复制粘贴
原文地址:https://jingyan.baidu.com/article/335530daf96f3a19cb41c3f4.html 终端打开后,我们可以简单的ping一下,查看一下连接地址 ...
- HGE引擎改进
基于HGEDX9版本修改. hge库: 1.全UNICODE化 2.增加时间模块:Timer_StartTick(),Timer_NowTick()等六个函数 3.增加服从正态分布的随机数生成函数:R ...
- Irrelevant Elements UVA-1635 (二项式定理)
vjudge链接 原题链接 乍一看似乎没什么思路,但是写几个简单的例子之后规律就变得很明显. 比如当 n=5 时,每一步计算后的结果如下: a1 a1+a2 a1+2a2+a3 a1+3a2+3a3+ ...
- 亲测可用!在线购书系统项目分享(Java)
项目简介 项目来源于:https://gitee.com/suimz_admin/BookShop 一个基于JSP+Servlet+Jdbc的书店系统.涉及技术少,易于理解,适合JavaWeb初学者学 ...
- [CF1037F]Maximum Reduction
题意 https://codeforces.com/contest/1037/problem/F 思考 摘自一种比较有趣的做法.我们对序列进行分治,每次统计跨过mid的区间的贡献.其正确性是保证的:每 ...