题目描述

有一棵点数为 N 的树,树边有边权。给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 。 将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间的距离的和的受益。问受益最大值是多少。

输入输出格式

输入格式:

第一行包含两个整数 N, K 。接下来 N-1 行每行三个正整数 fr, to, dis , 表示该树中存在一条长度为 dis 的边 (fr, to) 。输入保证所有点之间是联通的。

输出格式:

输出一个正整数,表示收益的最大值。

输入输出样例

输入样例#1:

3 1
1 2 1
1 3 2
输出样例#1:

3

说明

对于 100% 的数据, 0<=K<=N <=2000

题解:

最终的收益等于每一条边的收益(权值乘以被用到的次数)的和,假设dp[i][j]表示以i为根的子树内有j个点为黑点时边的收益,从叶子到根的顺序计算每条边的收益,遍历到i点时,i的子树里的边已经被计算过了,i到其儿子的边被新加了进来,用这些新加的边的收益和子树的收益更新以i为根的子树的收益。

转移方程为dp[i][j]=dp[k][l]+边权*子树内黑点*子树外黑点+边权*子树内白点*子树外白点。

一开始我以为自己计算的是答案的两倍,这样智障了很久,后来把/2删掉后过了,我又仔细思考了一下,我是一条边一条边的算的,所以只会算一次。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstdio>
#define nn 2010
#define mm 4010
#define lo long long
#define inf -100000000
using namespace std;
int e=0;
int fir[nn],nxt[mm],to[mm],w[mm],size[nn],n,k;
lo dp[nn][nn];
bool vis[nn];
int get()
{
int ans=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)) {ans=ans*10+ch-'0';ch=getchar();}
return ans*f;
}
void add(int a,int b,int c)
{
nxt[++e]=fir[a];fir[a]=e;to[e]=b;w[e]=c;
nxt[++e]=fir[b];fir[b]=e;to[e]=a;w[e]=c;
}
void dfs(int o)
{
size[o]=1;
for(int i=fir[o];i;i=nxt[i])
if(!vis[to[i]])
{
vis[to[i]]=1;
dfs(to[i]);
size[o]+=size[to[i]];
}
}
void solve(int o)
{
dp[o][0]=0;
dp[o][1]=0;
for(int i=fir[o];i;i=nxt[i])
if(size[o]>size[to[i]])
{
solve(to[i]);
for(int j=size[o];j>=0;j--) //把size[o]写成了size[i]
for(int p=0;p<=size[to[i]]&&p<=j;p++)
dp[o][j]=max(dp[o][j],dp[to[i]][p]+dp[o][j-p]+(lo)p*(k-p)*w[i]+(lo)w[i]*(size[to[i]]-p)*(n-k-size[to[i]]+p));
}
}
int main()
{
n=get(),k=get();
int a,b,c;
for(int i=1;i<n;i++)
{
a=get();b=get();c=get();
add(a,b,c);
}
vis[1]=1;
dfs(1);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
dp[i][j]=inf;
solve(1);
printf("%lld",dp[1][k]);
return 0;
}

  

洛谷 3177 [HAOI2015] 树上染色的更多相关文章

  1. BZOJ4033或洛谷3177 [HAOI2015]树上染色

    BZOJ原题链接 洛谷原题链接 很明显的树形\(DP\). 因为记录每个点的贡献很难,所以我们可以统计每条边的贡献. 对于每一条边,设边一侧的黑点有\(B_x\)个,白点有\(W_x\),另一侧黑点有 ...

  2. 洛谷 P3177 [HAOI2015]树上染色 树形DP

    洛谷 P3177 [HAOI2015]树上染色 树形DP 题目描述 有一棵点数为 \(n\) 的树,树边有边权.给你一个在 \(0 \sim n\)之内的正整数 \(k\) ,你要在这棵树中选择 \( ...

  3. 洛谷 P3177 [HAOI2015]树上染色

    题目链接 题目描述 有一棵点数为 \(N\) 的树,树边有边权.给你一个在 \(0~ N\) 之内的正整数 \(K\) ,你要在这棵树中选择 \(K\)个点,将其染成黑色,并将其他 的\(N-K\)个 ...

  4. 洛谷P3177 [HAOI2015]树上染色(树形dp)

    题目描述 有一棵点数为 N 的树,树边有边权.给你一个在 0~ N 之内的正整数 K ,你要在这棵树中选择 K个点,将其染成黑色,并将其他 的N-K个点染成白色 . 将所有点染色后,你会获得黑点两两之 ...

  5. 洛谷P3177 [HAOI2015]树上染色(树上背包)

    题意 题目链接 Sol 比较套路吧,设\(f[i][j]\)表示以\(i\)为根的子树中选了\(j\)个黑点对答案的贡献 然后考虑每条边的贡献,边的两边的答案都是可以算出来的 转移的时候背包一下. # ...

  6. 洛谷P3178 [HAOI2015]树上操作(dfs序+线段树)

    P3178 [HAOI2015]树上操作 题目链接:https://www.luogu.org/problemnew/show/P3178 题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边 ...

  7. 洛谷P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  8. 洛谷P3178 [HAOI2015]树上操作(线段树)

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

  9. 洛谷 P3178 [HAOI2015]树上操作

    题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 ...

随机推荐

  1. GitHub - firebase/php-jwt: PEAR package for JWT

        PHP-JWT A simple library to encode and decode JSON Web Tokens (JWT) in PHP, conforming to RFC 75 ...

  2. 2016年中国独角兽企业估值榜 TOP300

    2016年中国独角兽企业估值榜 TOP300[完整榜单] 类型:品牌资讯/名企动态 阅读:6735次 来源: 中商情报网 我要评论   摘要:独角兽公司是什么?独角兽公司指的是那些估值达到10亿美元以 ...

  3. .Net Core 授权系统组件解析

    前面关于.Net Core如何进行用户认证的核心流程介绍完毕之后,.Net Core 认证系统之Cookie认证源码解析远程认证暂时不介绍,后期有时间,我会加上.接下去介绍认证组件是如何和认证组件一起 ...

  4. arcgis几何对象

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. golang之下载安装配置

    1.下载:根据操作系统和计算架构选择合适的安装包,操作系统类型有linux.mac.windows等,计算架构分为32位的386计算架构和64位的amd64计算架构 2.安装:推荐安装到 /usr/l ...

  6. Mac上定时运行脚本工具--launchctl

    在Mac上可以像在Linux上一样,使用crontab来定时运行脚本,但苹果并不推荐这个方法.苹果推荐使用Launchctl来完成定时任务. 首先,我们先写一个可执行的脚本,列子为php脚本,名字为t ...

  7. 数据库lib7第4题创建存储过程

    1. 传入2个字符串变量,其中,每个字符串是用分号(:)分隔的字串形式, 比如str1=’ab12;ab;cccc;tty’, str2=’1;6sf;8fffff;dd’, 注意,字符串是用户输入的 ...

  8. python的数据类型和变量

    数据类型 计算机顾名思义就是可以做数学计算的机器,因此,计算机程序理所当然地可以处理各种数值.但是,计算机能处理的远不止数值,还可以处理文本.图形.音频.视频.网页等各种各样的数据,不同的数据,需要定 ...

  9. TCPThree_C杯 Day2

    T1 我已经被拉格朗日插值蒙蔽了双眼,变得智障无比. 第一反应就是拉格朗日插值,然后就先放下了它. 模数那么小,指数那么大,这是一套noip模拟题,拉格朗日,你脑袋秀逗了? 无脑暴力20分贼开心. 正 ...

  10. 中国境内PE\VC\投资公司名单

    中国境内PE\VC\投资公司名单 1.青云创投 2.高盛 3.红杉资本 4.鼎晖创投 5.枫丹国际 6.派杰投资银行 7.凯雷投资 8.长安私人资本 9.格林雷斯 10.汉能资本 11.启明创投 12 ...