colab上基于tensorflow2.0的BERT中文多分类
bert模型在tensorflow1.x版本时,也是先发布的命令行版本,随后又发布了bert-tensorflow包,本质上就是把相关bert实现封装起来了。
tensorflow2.0刚刚在2019年10月左右发布,谷歌也在积极地将之前基于tf1.0的bert实现迁移到2.0上,但近期看还没有完全迁移完成,所以目前还没有基于tf2.0的bert安装包面世,因为近期想基于现有发布的模型做一个中文多分类的事情,所以干脆就弄了个基于命令行版本的。过程中有一些坑,随之记录下来。
1. colab:因为想用谷歌免费的GPU(暂时没研究TPU怎么用),所以直接在colab上弄。
2. 中文多分类:
2.1. 训练数据来源:在百度百科上找了大概100多个词条的数据,自己随便标注成大概8个类别吧。把百科的概述、正文、属性等信息进行清洗后连到一起,类似于这种格式:
label info
1 词条1的描述balabala
0 词条2的描述balabala
然后再按照9:1分成两个集合,分别明明为train.tsv 和 dev.tsv,作为训练集和测试集。注意每个训练集的第一行都是标题行,这个是我的数据解析器里面这么定义的。
2.2. 预训练模型:谷歌已经提供了基于tf2.0 keras网络结构的中文预训练模型,页面地址是:https://tfhub.dev/tensorflow/bert_zh_L-12_H-768_A-12/1。直接使用就可以了。注意,基于tf1.0的中文预训练模型(bert_chinese_L-12_H-768_A-12)不能在tf2.0里使用,要用脚本转换,但我们既然已经有了最新的模型,就直接用啦。
2.3. bert代码:在github上直接下载:https://github.com/tensorflow/models.git。注意bert已经被谷歌从tensorflow中分离出来,放在models目录下当成第三方独立代码了,所以需要自己下载配置。
2.4. 数据预处理脚本:在2.3步骤下载下来的bert代码里,位置是:models/official/nlp/bert/create_finetuning_data.py,其中已经定义好了支持若干种数据格式的类及实现,因为我需要处理上面自己定义的那种格式的数据,所以自己写了一个处理百度百科的类放到里面了,如果大家有自己的数据格式,修改后覆盖原来的文件就ok了,具体需要改的是:classifier_data_lib.py和create_finetuning_data.py 这两个文件
2. tf-nightly和bert代码下载:目前这个时间段基于tf2.0的bert只能在tf-nightly下面使用(看社区里的留言,应该在tf2.1正式发布的时候就会提供bert正式版了),所以要安装tf-nightly并且在这下面运行后面的代码。
3. 数据预处理脚本的执行:这个就按照命令行的模式在colab里调用脚本create_finetuning_data.py就可以了,没什么难的,有个坑是目前tf2.0的中文预训练模型没提供基于gs的存储位置,而预处理脚本中需要vocab.txt来分词,所以要先离线把模型下载下来,解压缩后,把里面的vocab.txt拿出来并上传到colab上,然后在预训练脚本里制定文件位置就ok(我把vocab.txt放到我的github上了,可以直接调用获取,但如果想获取最新的vocab.txt,最好自己下载然后加压获取。后续谷歌应该会提供在线模型地址,就不用这么麻烦了)
4. finetune:直接调用脚本models/official/nlp/bert/run_classifier.py,这里有个坑是脚本参数里需要bert_config.json,但上面的中文预处理模型没提供这个模型配置文件,所以干脆从其他tf1.0的模型里copy了一个过来(我用的是uncased_L-12_H-768_A-12的bert_config.json)
代码我都放到github上了,大家自己取用即可,欢迎拍砖、吐槽、交流!
https://github.com/liloi/bert-tf2/blob/master/bert-tf2-zh-demo.ipynb
colab上基于tensorflow2.0的BERT中文多分类的更多相关文章
- 基于tensorflow2.0 使用tf.keras实现Fashion MNIST
本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflo ...
- 基于tensorflow2.0和cifar100的VGG13网络训练
VGG是2014年ILSVRC图像分类竞赛的第二名,相比当年的冠军GoogleNet在可扩展性方面更胜一筹,此外,它也是从图像中提取特征的CNN首选算法,VGG的各种网络模型结构如下: 今天代码的原型 ...
- 【tensorflow2.0】处理图片数据-cifar2分类
1.准备数据 cifar2数据集为cifar10数据集的子集,只包括前两种类别airplane和automobile. 训练集有airplane和automobile图片各5000张,测试集有airp ...
- 推荐模型DeepCrossing: 原理介绍与TensorFlow2.0实现
DeepCrossing是在AutoRec之后,微软完整的将深度学习应用在推荐系统的模型.其应用场景是搜索推荐广告中,解决了特征工程,稀疏向量稠密化,多层神经网路的优化拟合等问题.所使用的特征在论文中 ...
- 编译可在Nexus5上运行的CyanogenMod13.0 ROM(基于Android6.0)
编译可在Nexus5上运行的CyanogenMod13.0 ROM (基于Android6.0) 作者:寻禹@阿里聚安全 前言 下文中无特殊说明时CM代表CyanogenMod的缩写. 下文中说的“设 ...
- Servlet3.0学习总结——基于Servlet3.0的文件上传
Servlet3.0学习总结(三)——基于Servlet3.0的文件上传 在Servlet2.5中,我们要实现文件上传功能时,一般都需要借助第三方开源组件,例如Apache的commons-fileu ...
- 一文上手Tensorflow2.0之tf.keras(三)
系列文章目录: Tensorflow2.0 介绍 Tensorflow 常见基本概念 从1.x 到2.0 的变化 Tensorflow2.0 的架构 Tensorflow2.0 的安装(CPU和GPU ...
- 基于AFNetworking3.0网络封装
概述 对于开发人员来说,学习网络层知识是必备的,任何一款App的开发,都需要到网络请求接口.很多朋友都还在使用原生的NSURLConnection一行一行地写,代码到处是,这样维护起来更困难了. 对于 ...
- iOS_SN_基于AFNetworking3.0网络封装
转发文章,原地址:http://www.henishuo.com/base-on-afnetworking3-0-wrapper/?utm_source=tuicool&utm_medium= ...
随机推荐
- 机器学习——SVM
整理自: https://blog.csdn.net/woaidapaopao/article/details/77806273?locationnum=9&fps=1 带核的SVM为什么能分 ...
- linux 安装一个共享的处理者
共享中断通过 request_irq 来安装就像不共享的一样, 但是有 2 个不同: SA_SHIRQ 位必须在 flags 参数中指定, 当请求中断时. dev_id 参数必须是独特的. 任何模块地 ...
- H3C重启设备
- Loj2604开车旅行
Loj2604开车旅行 我完全没有看出这道题哪里是DP 首先,一个位置向后的最近和第二近我们可以通过set去简单实现 通过维护最大和次大即可 至于高度相同的情况我们可以通过先在set中查询小的来实现 ...
- HTML自制计算器
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...
- python类中的一些神奇方法
__str__:用于在print(对象)时,直接打印__str__的返回值 class Animal: def __init__(self, name): self.name = name def _ ...
- 超简单!pytorch入门教程(三):构造一个小型CNN
torch.nn只接受mini-batch的输入,也就是说我们输入的时候是必须是好几张图片同时输入. 例如:nn. Conv2d 允许输入4维的Tensor:n个样本 x n个色彩频道 x 高度 x ...
- 快速傅里叶变换与快速数论变换瞎学笔记$QwQ$
$umm$先预警下想入门$FFT$就不要康我滴学习笔记了,,, 就,我学习笔记基本上是我大概$get$之后通过写$blog$加强理解加深记忆这样儿的,有些姿势点我可能会直接$skip$什么的,所以对除 ...
- table 组件
table 组件了解一下? https://juejin.im/post/5da925bdf265da5b5d205b3f?utm_source=gold_browser_extension
- 从零开始Go语言-GoLand(编译器)-Windows(平台)
本文章适合那些想入门Go语言,却又不知道如何搭建自己的第一个HelloWorld的同学. 推荐几个Go语言相关学习网站: C语言中文网: http://c.biancheng.net/golang/ ...