问题引入

先让我们看一个简单的问题,有N个元素,Q次操作,每次操作需要求出一段区间内的最大/小值。

这就是著名的RMQ问题。

RMQ问题的解法有很多,如线段树、单调队列(某些情况下)、ST表等。这里主要探讨ST表


过程

ST表是一种神奇的算法,它以倍增与二进制为基础,实现区间内最大/小值。话不多说,直接切入正题——

我们这里以求区间最大值为例。

首先,我们可以用O(\(N lg N\))的时间复杂度预处理出以i开始,接下来2j个元素中的最大值。我们借助递推/DP的思想。

for ( int i = 1; i <= l; ++i )
for ( int j = 1; j + ( 1 << i ) - 1 <= n; ++j )
f[j][i] = max( f[j][i - 1], f[j + ( 1 << ( i - 1 ) )][i - 1] );

然后就可以以O(1)的复杂度求出任意两个区间的最大值辣。

假设要求[ x, y ] 区间内的最大值(因为区间相交对于最大值是没有影响的,所以可以直接把最接近区间长度的2的倍数设为2z,求出f[x][z]f[y - ( 1 << z ) + 1][z]的最大值即可)。

printf( "%d\n", max( f[x][z], f[y - ( 1 << z ) + 1][z] ) );

为了保证复杂度为O(1) 我们采用一个数组预处理出1 ~ N 的log值

lg[1] = 0;
for ( int i = 2; i <= N; ++i ) lg[i] = lg[i >> 1] + 1;

代码

#include<cstdio>
#include<iostream>
#include<cctype>
#include<queue>
using namespace std; int N, Q;
int f[100005][30];
int lg[100005]; int main(){
scanf( "%d%d", &N, &Q );
for ( int i = 1; i <= N; ++i ) scanf( "%d", &f[i][0] );//从i开始2^0(就是1)个元素的最大值就是它自己
lg[1] = 0;//2 ^ 0 = 1 所以lg 1 = 0
for ( int i = 2; i <= N; ++i ) lg[i] = lg[i >> 1] + 1;
int l(lg[N]);
for ( int i = 1; i <= l; ++i )//按长度从小到大,以保证较小长度已经完成
for ( int j = 1; j + ( 1 << i ) - 1 <= N; ++j )
f[j][i] = max( f[j][i - 1], f[j + ( 1 << ( i - 1 ) )][i - 1] );//如上所述
while( Q-- ){
int x, y, z;
scanf( "%d%d", &x, &y );
z = lg[y - x + 1];
printf( "%d\n", max( f[x][z], f[y - ( 1 << z ) + 1][z] ) );//如上所述
}
return 0;
}

推荐题目

  1. 洛谷 P3865【模板】ST表(等于Loj #10119. 「一本通 4.2 例 1」数列区间最大值 )
  2. 洛谷 P2251 质量检测
  3. Loj #10120. 「一本通 4.2 例 2」最敏捷的机器人
  4. Loj #10121. 「一本通 4.2 例 3」与众不同
  5. Loj #10122. 「一本通 4.2 练习 1」天才的记忆
  6. Bzoj [1699: Usaco2007 Jan]Balanced Lineup排队 (等于Loj #10123. 「一本通 4.2 练习 2」Balanced Lineup 洛谷 P2880 [USACO07JAN]平衡的阵容Balanced Lineup )
  7. NOIP 2011 提高组 选择客栈 :洛谷 P1311 选择客栈 Loj #2597. 「NOIP2011」选择客栈

「学习笔记」ST表的更多相关文章

  1. 「学习笔记」字符串基础:Hash,KMP与Trie

    「学习笔记」字符串基础:Hash,KMP与Trie 点击查看目录 目录 「学习笔记」字符串基础:Hash,KMP与Trie Hash 算法 代码 KMP 算法 前置知识:\(\text{Border} ...

  2. 「学习笔记」FFT 之优化——NTT

    目录 「学习笔记」FFT 之优化--NTT 前言 引入 快速数论变换--NTT 一些引申问题及解决方法 三模数 NTT 拆系数 FFT (MTT) 「学习笔记」FFT 之优化--NTT 前言 \(NT ...

  3. 「学习笔记」Treap

    「学习笔记」Treap 前言 什么是 Treap ? 二叉搜索树 (Binary Search Tree/Binary Sort Tree/BST) 基础定义 查找元素 插入元素 删除元素 查找后继 ...

  4. 「学习笔记」Min25筛

    「学习笔记」Min25筛 前言 周指导今天模拟赛五分钟秒第一题,十分钟说第二题是 \(\text{Min25}​\) 筛板子题,要不是第三题出题人数据范围给错了,周指导十五分钟就 \(\text{AK ...

  5. 「学习笔记」FFT 快速傅里叶变换

    目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔 ...

  6. 「学习笔记」wqs二分/dp凸优化

    [学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...

  7. 「学习笔记」倍增思想与lca

    目录 ST表 算法 预处理 查询 关于 log2 Code 预处理 查询 例题 P2880 P2048 lca 树上 RMQ 前置知识:欧拉序列 算法 Code 离线 Tarjan 算法 Code 倍 ...

  8. 「学习笔记」递推 & 递归

    引入 假设我们想计算 \(f(x) = x!\).除了简单的 for 循环,我们也可以使用递归. 递归是什么意思呢?我们可以把 \(f(x)\) 用 \(f(x - 1)\) 表示,即 \(f(x) ...

  9. 「学习笔记」动态规划 I『初识DP』

    写在前面 注意:此文章仅供参考,如发现有误请及时告知. 更新日期:2018/3/16,2018/12/03 动态规划介绍 动态规划,简称DP(Dynamic Programming) 简介1 简介2 ...

随机推荐

  1. bzoj 4386: [POI2015]Wycieczki

    bzoj 4386: [POI2015]Wycieczki 这题什么素质,爆long long就算了,连int128都爆……最后还是用long double卡过的……而且可能是我本身自带大常数吧,T了 ...

  2. js常见运算符

    博客地址 :https://www.cnblogs.com/sandraryan/

  3. Pytorch实现MNIST(附SGD、Adam、AdaBound不同优化器下的训练比较) adabound实现

     学习工具最快的方法就是在使用的过程中学习,也就是在工作中(解决实际问题中)学习.文章结尾处附完整代码. 一.数据准备  在Pytorch中提供了MNIST的数据,因此我们只需要使用Pytorch提供 ...

  4. Project Euler Problem 7-10001st prime

    素数线性筛 MAXN = 110100 prime = [0 for i in range(210000)] for i in range(2,MAXN): if prime[i] == 0: pri ...

  5. spring+mybatis 整合

    项目目录: 一.导入pom.xml依赖 最下边有 二.在applicationContext.xml配置连接器和数据库的数据源 三.流程:用户请求数据,springmvc解析url,通过控制器和适配器 ...

  6. Python--day69--单表查询之神奇的双下划线

    单表查询之神奇的双下划线: 单表查询之神奇的双下划线 models.Tb1.objects.filter(id__lt=10, id__gt=1) # 获取id大于1 且 小于10的值 models. ...

  7. dotnet 使用 Qpush 快速从电脑到手机推送文字

    在手机打字总不是方便,于是就有了 Qpush 这个工具,通过这个工具可以快速从电脑到手机推送文字. 但是这个工具没有找到客户端,于是我就给他写了一个库,通过这个库可以快速进行开发 先介绍QPush 快 ...

  8. H3C 域名

  9. 5款顶尖Windows文件传输工具

    5款顶尖Windows文件传输工具 英文原文: Drasko 日常工作中,公司里的系统管理员或其他岗位的员工都需要传递大量各种类型的文件和文档.其中一些可以通过 email 收发.但由于 email ...

  10. java的四种代码块

    用{}括起来的称为代码块: 普通代码块:类中方法的方法体 构造代码块:类中{}直接括起来的语句,每次创建对象都会被调用,先于构造函数执行 静态代码块:类中static{}括起来的语句,只执行一次,先于 ...