SPOJ Another Longest Increasing Subsequence Problem

传送门:https://www.spoj.com/problems/LIS2/en/

题意:

给定 N个数对 \((x_i,y_i)\),求最长上升子序列的长度。上升序列定义为满足\((x_i,y_i)\)对i<j 有 \(x_i<x_j\) 且 \(y_i<y_j\)

题解:

一个三维最长链问题

第一维是存位置,第二维存x,第三维存y

注意查询是查询到p[i].z-1然后更新

细节方面和HDU4742是一样的

详情:https://www.cnblogs.com/buerdepepeqi/p/11193426.html

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
struct node {
int x, y, z;
} p[maxn];
bool cmpx(node A, node B) {
return A.x < B.x;
}
bool cmpy(node A, node B) {
return A.y < B.y;
}
int lowbit(int x) {
return x & (-x);
}
int n;
int dp[maxn];
int Hash[maxn];
int bit[maxn];
void add(int pos, int val) {
while(pos < n + 2) {
bit[pos] = max(bit[pos], val);
pos += lowbit(pos);
}
}
int sum(int pos) {
int res = 0;
while(pos) {
res = max(res, bit[pos]);
pos -= lowbit(pos);
}
return res;
}
void init(int x) {
for(int i = x; i < n + 2; i += lowbit(i))
bit[i] = 0;
}
void solve(int l, int r) { int mid = (l + r) >> 1;
sort(p + l, p + mid + 1, cmpy);
sort(p + mid + 1, p + r + 1, cmpy);
int j = l;
for(int i = mid + 1; i <= r; i++) {
while(j <= mid && p[j].y < p[i].y) {
add(p[j].z, dp[p[j].x]);
j++;
}
int tmp = sum(p[i].z - 1) + 1;
dp[p[i].x] = max(dp[p[i].x], tmp);
}
for(int i = l; i <= mid; i++) init(p[i].z);
sort(p + mid + 1, p + r + 1, cmpx);
}
void CDQ(int l, int r) {
if(l == r) {
return;
}
int mid = (l + r) >> 1;
CDQ(l, mid);
solve(l, r);
CDQ(mid + 1, r);
}
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d%d", &p[i].y, &p[i].z);
p[i].x = i;
dp[i] = 1;
Hash[i] = p[i].z;
} sort(Hash + 1, Hash + n + 1);
int cnt = unique(Hash + 1, Hash + n + 1) - Hash - 1;
for(int i = 1; i <= n; i++) {
p[i].z = lower_bound(Hash + 1, Hash + cnt + 1, p[i].z) - Hash;
}
// debug1(n);
CDQ(1, n);
int ans = 0;
for(int i = 1; i <= n; i++) {
ans = max(ans, dp[i]);
}
printf("%d\n", ans); return 0;
}

SPOJ Another Longest Increasing Subsequence Problem 三维最长链的更多相关文章

  1. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  2. SPOJ:Another Longest Increasing Subsequence Problem(CDQ分治求三维偏序)

    Given a sequence of N pairs of integers, find the length of the longest increasing subsequence of it ...

  3. SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)

    题目链接  LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...

  4. SPOJ - LIS2 Another Longest Increasing Subsequence Problem

    cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...

  5. [BZOJ2225][SPOJ2371]LIS2 - Another Longest Increasing Subsequence Problem:CDQ分治+树状数组+DP

    分析 这回试了一下三级标题,不知道效果怎么样? 回到正题,二维最长上升子序列......嗯,我会树套树. 考虑\(CDQ\)分治,算法流程: 先递归进入左子区间. 将左,右子区间按\(x\)排序. 归 ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

  8. LintCode刷题笔记--Longest Increasing Subsequence

    标签: 动态规划 描述: Given a sequence of integers, find the longest increasing subsequence (LIS). You code s ...

  9. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

随机推荐

  1. NPOI操作、导出Excel

    //使用NPOI操作Excel private void ExcelNPOI(System.Data.DataTable dt, HttpContext context) { IWorkbook wo ...

  2. 【JZOJ4886】【NOIP2016提高A组集训第13场11.11】字符串

    题目描述 某日mhy12345在教同学们写helloworld,要求同学们用程序输出一个给定长度的字符串,然而发现有些人输出了一些"危险"的东西,所以mhy12345想知道对于任意 ...

  3. .net 数据表格显示控件

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/chenjinge7/article/details/30470609 1. GridView 控件 ...

  4. spring-data-jpa实体类继承抽象类如何映射父类的属性到数据库

    在抽象父类上加上注解@MappedSuperclass @MappedSuperclass public class Pet { private Integer id;//id private Str ...

  5. Java数据类型分析

    Java的简单数据讲解列表如下: int:int为整数类型,存储的时候,用4个字节存储,范围为-2,147,483,648到2,147,483,647,在变量初始化的时候,int类型的默认值为0.   ...

  6. AtCoder Grand Contest 019 B - Reverse and Compare【思维】

    AtCoder Grand Contest 019 B - Reverse and Compare 题意:给定字符串,可以选定任意i.j且i<=j(当然i==j时没啥卵用),然后翻转i到j的字符 ...

  7. 文字渐变效果:图层中的mask属性

    http://www.cocoachina.com/ios/20150716/12571.html 前言 已经很久没写blog了,最近发生了太多事情,失去了生命中一位很重要的成员,使我不得不放下对技术 ...

  8. python print函数

  9. Python中json和eval的区别

    >>> import json >>> s = '{"one":1,"two":2}' >>> json. ...

  10. 行为面试法(STAR)

    从过去的行为预测未来,是一种提问技巧. 情景 : Situation 当时怎么了 当时你所在团队主要销售任务是什么目标 : Task 你要干什么 当时你的销售业绩是多少行动 : Action 你都干了 ...