SPOJ Another Longest Increasing Subsequence Problem

传送门:https://www.spoj.com/problems/LIS2/en/

题意:

给定 N个数对 \((x_i,y_i)\),求最长上升子序列的长度。上升序列定义为满足\((x_i,y_i)\)对i<j 有 \(x_i<x_j\) 且 \(y_i<y_j\)

题解:

一个三维最长链问题

第一维是存位置,第二维存x,第三维存y

注意查询是查询到p[i].z-1然后更新

细节方面和HDU4742是一样的

详情:https://www.cnblogs.com/buerdepepeqi/p/11193426.html

代码:

#include <set>
#include <map>
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
struct node {
int x, y, z;
} p[maxn];
bool cmpx(node A, node B) {
return A.x < B.x;
}
bool cmpy(node A, node B) {
return A.y < B.y;
}
int lowbit(int x) {
return x & (-x);
}
int n;
int dp[maxn];
int Hash[maxn];
int bit[maxn];
void add(int pos, int val) {
while(pos < n + 2) {
bit[pos] = max(bit[pos], val);
pos += lowbit(pos);
}
}
int sum(int pos) {
int res = 0;
while(pos) {
res = max(res, bit[pos]);
pos -= lowbit(pos);
}
return res;
}
void init(int x) {
for(int i = x; i < n + 2; i += lowbit(i))
bit[i] = 0;
}
void solve(int l, int r) { int mid = (l + r) >> 1;
sort(p + l, p + mid + 1, cmpy);
sort(p + mid + 1, p + r + 1, cmpy);
int j = l;
for(int i = mid + 1; i <= r; i++) {
while(j <= mid && p[j].y < p[i].y) {
add(p[j].z, dp[p[j].x]);
j++;
}
int tmp = sum(p[i].z - 1) + 1;
dp[p[i].x] = max(dp[p[i].x], tmp);
}
for(int i = l; i <= mid; i++) init(p[i].z);
sort(p + mid + 1, p + r + 1, cmpx);
}
void CDQ(int l, int r) {
if(l == r) {
return;
}
int mid = (l + r) >> 1;
CDQ(l, mid);
solve(l, r);
CDQ(mid + 1, r);
}
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
scanf("%d", &n);
for(int i = 1; i <= n; i++) {
scanf("%d%d", &p[i].y, &p[i].z);
p[i].x = i;
dp[i] = 1;
Hash[i] = p[i].z;
} sort(Hash + 1, Hash + n + 1);
int cnt = unique(Hash + 1, Hash + n + 1) - Hash - 1;
for(int i = 1; i <= n; i++) {
p[i].z = lower_bound(Hash + 1, Hash + cnt + 1, p[i].z) - Hash;
}
// debug1(n);
CDQ(1, n);
int ans = 0;
for(int i = 1; i <= n; i++) {
ans = max(ans, dp[i]);
}
printf("%d\n", ans); return 0;
}

SPOJ Another Longest Increasing Subsequence Problem 三维最长链的更多相关文章

  1. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

  2. SPOJ:Another Longest Increasing Subsequence Problem(CDQ分治求三维偏序)

    Given a sequence of N pairs of integers, find the length of the longest increasing subsequence of it ...

  3. SPOJ LIS2 - Another Longest Increasing Subsequence Problem(CDQ分治优化DP)

    题目链接  LIS2 经典的三维偏序问题. 考虑$cdq$分治. 不过这题的顺序应该是 $cdq(l, mid)$ $solve(l, r)$ $cdq(mid+1, r)$ 因为有个$DP$. #i ...

  4. SPOJ - LIS2 Another Longest Increasing Subsequence Problem

    cdq分治,dp(i)表示以i为结尾的最长LIS,那么dp的递推是依赖于左边的. 因此在分治的时候需要利用左边的子问题来递推右边. (345ms? 区间树TLE /****************** ...

  5. [BZOJ2225][SPOJ2371]LIS2 - Another Longest Increasing Subsequence Problem:CDQ分治+树状数组+DP

    分析 这回试了一下三级标题,不知道效果怎么样? 回到正题,二维最长上升子序列......嗯,我会树套树. 考虑\(CDQ\)分治,算法流程: 先递归进入左子区间. 将左,右子区间按\(x\)排序. 归 ...

  6. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  7. 【Lintcode】076.Longest Increasing Subsequence

    题目: Given a sequence of integers, find the longest increasing subsequence (LIS). You code should ret ...

  8. LintCode刷题笔记--Longest Increasing Subsequence

    标签: 动态规划 描述: Given a sequence of integers, find the longest increasing subsequence (LIS). You code s ...

  9. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

随机推荐

  1. 使用pip出现 cannot import name "main"

    最近在linux使用pip install时遇到了这个报错 1.jpg ImportError: cannot import name main 遇到这个问题,我的解决办法是:cd 到usr/bin目 ...

  2. [自考]C++中一些特殊用法 2016-10-16 22:12 318人阅读 评论(30) 收藏

    做了一段时间的C++的试题了,总结一些这段时间经常犯错和需要注意的地方. 一.常用的保留字和符号 const 定义常量或者参数 void 定义空类型变量或空类型指针,或指定函数没有返回值 static ...

  3. UVA_490:Rotating Sentences

    "R  Ie   n  te  h  iD  ne  kc  ,a   r  tt  he  es  r  eo  fn  oc  re  e   s  Ia   i  ad  m,  .  ...

  4. @codeforces - 1161F@ Zigzag Game

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 2n 个结点的完全二分图,1~n 在左边,n+1~2n ...

  5. 2018-9-30-C#-从零开始写-SharpDx-应用-画三角

    title author date CreateTime categories C# 从零开始写 SharpDx 应用 画三角 lindexi 2018-09-30 18:30:14 +0800 20 ...

  6. Linux中使用gcc编译文件

    一个项目中可能有多个cpp文件,在linux下编译执行过程如下: g++ main.cpp distance.cpp ./a.out 即可一起编译两个文件,然后执行该程序.

  7. 开发者说:如何参与定义一款 IDE 插件

    摘要: If not now,when? If not you,who?共同定义 Cloud Toolkit 的未来! 自从产品经理银时小伙和他的开发小哥们在去年12月发布 Cloud Toolkit ...

  8. 怎么清除火狐浏览器的cookie?

    火狐浏览器清除Cookie方法/步骤 1.打开火狐浏览器.并在火狐浏览器工具栏找到并单击“工具”下的“选项”. 2.在打开的“火狐浏览器选项”程序窗口中,找到工具栏中的“隐私”并单击,在隐私选项下找到 ...

  9. git比较两个版本之间的区别

    查看当前没有add 的内容修改: git diff 查看已经add 没有commit 的改动 git diff --cached 查看当前没有add和commit的改动: git diff HEAD ...

  10. laravel博客后台操作步骤