Kakuro Extension HDU - 3338 (Dinic)
1.place a single digit from 1 to 9 in each "white" cell
2.for all runs, the sum of all digits in a "run" must match the clue associated with the "run"
Given the grid, your task is to find a solution for the puzzle.
Picture of the first sample input Picture of the first sample output
InputThe first line of input contains two integers n and m (2 ≤ n,m ≤ 100) — the number of rows and columns correspondingly. Each of the next n lines contains descriptions of m cells. Each cell description is one of the following 7-character strings: .......— "white" cell;
XXXXXXX— "black" cell with no clues;
AAA\BBB— "black" cell with one or two clues. AAA is either a 3-digit clue for the corresponding vertical run, or XXX if there is no associated vertical run. BBB is either a 3-digit clue for the corresponding horizontal run, or XXX if there is no associated horizontal run.
The first row and the first column of the grid will never have any white cells. The given grid will have at least one "white" cell.It is guaranteed that the given puzzle has at least one solution.OutputPrint n lines to the output with m cells in each line. For every "black" cell print '_' (underscore), for every "white" cell print the corresponding digit from the solution. Delimit cells with a single space, so that each row consists of 2m-1 characters.If there are many solutions, you may output any of them.Sample Input
6 6
XXXXXXX XXXXXXX 028\XXX 017\XXX 028\XXX XXXXXXX
XXXXXXX 022\022 ....... ....... ....... 010\XXX
XXX\034 ....... ....... ....... ....... .......
XXX\014 ....... ....... 016\013 ....... .......
XXX\022 ....... ....... ....... ....... XXXXXXX
XXXXXXX XXX\016 ....... ....... XXXXXXX XXXXXXX
5 8
XXXXXXX 001\XXX 020\XXX 027\XXX 021\XXX 028\XXX 014\XXX 024\XXX
XXX\035 ....... ....... ....... ....... ....... ....... .......
XXXXXXX 007\034 ....... ....... ....... ....... ....... .......
XXX\043 ....... ....... ....... ....... ....... ....... .......
XXX\030 ....... ....... ....... ....... ....... ....... XXXXXXX
Sample Output
_ _ _ _ _ _
_ _ 5 8 9 _
_ 7 6 9 8 4
_ 6 8 _ 7 6
_ 9 2 7 4 _
_ _ 7 9 _ _
_ _ _ _ _ _ _ _
_ 1 9 9 1 1 8 6
_ _ 1 7 7 9 1 9
_ 1 3 9 9 9 3 9
_ 6 7 2 4 9 2 _ 题意:
给定横着的和和竖着的和,输出可行解.
思路:
将横着的限制看成一个点,竖着的限制看成一个点,白色方块在中间即可.
白块限制流量1~9,本来应该是上下界网络流,但是因为每一条的边的下界是一样的,所以通过减一处理即可转换为最大流.
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime> #define fuck(x) cerr<<#x<<" = "<<x<<endl;
#define debug(a, x) cerr<<#a<<"["<<x<<"] = "<<a[x]<<endl;
#define ls (t<<1)
#define rs ((t<<1)|1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int loveisblue = ;
const int maxn = ;
const int maxm = ;
const int inf = 0x3f3f3f3f;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-); int Head[maxn],cnt;
struct edge{
int Next,v,w;
}e[maxm];
void add_edge(int u,int v,int w){
// cout<<u<<" "<<v<<" "<<w<<endl;
e[cnt].Next=Head[u];
e[cnt].v=v;
e[cnt].w=w;
Head[u]=cnt++; e[cnt].Next=Head[v];
e[cnt].v=u;
e[cnt].w=;
Head[v]=cnt++;
} int D_vis[maxn],D_num[maxn];
int source,meeting;
bool bfs()
{ memset(D_vis,,sizeof(D_vis));
for(int i=;i<=meeting;i++){//注意要覆盖所有点
D_num[i]=Head[i];
}
D_vis[source]=;
queue<int>q;
q.push(source);
int r=;
while(!q.empty()){
int u=q.front();
q.pop();
int k=Head[u];
while(k!=-){
if(!D_vis[e[k].v]&&e[k].w){
D_vis[e[k].v]=D_vis[u]+;
q.push(e[k].v);
}
k=e[k].Next;
}
}
// fuck(meeting)
return D_vis[meeting];
}
int dfs(int u,int f)
{
if(u==meeting){return f;}
int &k=D_num[u];
while(k!=-){
if(D_vis[e[k].v]==D_vis[u]+&&e[k].w){
int d=dfs(e[k].v,min(f,e[k].w));
if(d>){
e[k].w-=d;
e[k^].w+=d;
return d;
}
}
k=e[k].Next;
}
return ;
}
int Dinic()
{
int ans=;
while(bfs()){
int f;
while((f=dfs(source,inf))>){
ans+=f;
}
}
return ans;
} char s[][][];
int mp1[][];
int mp2[][];
int mph[][];
int mps[][];
int mpk[][];
int cal(char a,char b,char c){
return (a-)*+(b-)*+c-;
} int main() {
// ios::sync_with_stdio(false);
// freopen("in.txt", "r", stdin); int n,m;
while (scanf("%d%d",&n,&m)!=EOF){
memset(Head,-,sizeof(Head));
memset(mp1,,sizeof(mp1));
memset(mp2,,sizeof(mp2));
cnt = ;
int cur = ;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%s",s[i][j]);
if(s[i][j][]=='.'){
cur++;
mp1[i][j]=cur;
cur++;
mp2[i][j]=cur;
mpk[i][j]=cnt;
add_edge(mp1[i][j],mp2[i][j],);
}
}
}
source = ;
meeting = ; for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(s[i][j][]!='.'&&s[i][j][]!='X'){
cur++;
mps[i][j]=cur;
int sum = cal(s[i][j][],s[i][j][],s[i][j][]);
for(int k=i+;k<=n;k++){
if(!mp1[k][j]){ break;}
add_edge(cur,mp1[k][j],inf);
sum--;
}
add_edge(source,cur,sum);
}if(s[i][j][]!='.'&&s[i][j][]!='X'){
cur++;
mph[i][j]=cur;
int sum = cal(s[i][j][],s[i][j][],s[i][j][]);
for(int k=j+;k<=m;k++){
if(!mp2[i][k]){ break;}
add_edge(mp2[i][k],cur,inf);
sum--;
}
add_edge(cur,meeting,sum);
}
}
}
int ans = Dinic();
// fuck(ans)
// fuck("????")
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
if(mp1[i][j]==){
printf("_ ");
}else{
printf("%d ",-e[mpk[i][j]].w+);
}
}
if(mp1[i][m]==){
printf("_\n");
}else{
printf("%d\n",-e[mpk[i][m]].w+);
}
} } return ;
}
Kakuro Extension HDU - 3338 (Dinic)的更多相关文章
- L - Kakuro Extension - HDU 3338 - (最大流)
题意:有一个填数字的游戏,需要你为白色的块内填一些值,不过不能随意填的,是有一些规则的(废话),在空白的上方和作方给出一些值,如果左下角有值说明下面列的和等于这个值,右上角的值等于这行后面的数的和,如 ...
- HDU 3338 Kakuro Extension (网络流,最大流)
HDU 3338 Kakuro Extension (网络流,最大流) Description If you solved problem like this, forget it.Because y ...
- HDU3338:Kakuro Extension(最大流)
Kakuro Extension Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 3338 最大流 ****
题意: 黑格子右上代表该行的和,左下代表该列下的和 链接:点我 这题可以用网络流做.以空白格为节点,假设流是从左流入,从上流出的,流入的容量为行和,流出来容量为列和,其余容量不变.求满足的最大流.由于 ...
- HDU3338 Kakuro Extension —— 最大流、方格填数类似数独
题目链接:https://vjudge.net/problem/HDU-3338 Kakuro Extension Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 3338:Kakuro Extension(脑洞大开的网络流)
http://acm.hdu.edu.cn/showproblem.php?pid=3338 题意:在一个n*m的地图里面,有黑方块和白方块,黑方块可能是“XXXXXXX”或者“YYY/YYY”,这里 ...
- HDU 3338 Kakuro Extension
网络最大流 TLE了两天的题目.80次Submit才AC,发现是刘汝佳白书的Dinic代码还可以优化.....瞬间无语..... #include<cstdio> #include< ...
- HDU - 3338 Kakuro Extension (最大流求解方格填数)
题意:给一个方格,每行每列都有对白色格子中的数之和的要求.每个格子中的数范围在[1,9]中.现在给出了这些要求,求满足条件的解. 分析:本题读入和建图比较恶心... 用网络流求解.建立源点S和汇点T, ...
- 【最大流】【HDU3338】【Kakuro Extension】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3338 题目大意:填数字,使白色区域的值得和等于有值得黑色区域的相对应的值,用网络流来做 题目思路:增加 ...
随机推荐
- python 子类继承父类属性及实例化方法
- 2018-8-9-win10-uwp-装机必备应用-含源代码
title author date CreateTime categories win10 uwp 装机必备应用 含源代码 lindexi 2018-8-9 9:7:31 +0800 2018-8-9 ...
- 字体图标font-awesome
其实有一些常见的图标使用字体图标比使用img来得好 Font Awesome 官网:http://fortawesome.github.io/Font-Awesome/ 字体代码:http://for ...
- JSTL的时间格式化
<%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %> 开头第一句必须上 ...
- python 替换字符串的方法replace()、正则re.sub()
一.replace()函数1用字符串本身的replace方法: a = 'hello word' b = a.replace('word','python') print b 1 2 3 二.re ...
- C - League of Leesins-构造
题意就是给多个三元组(内部没有顺序),让你构造一个序列,使得所有的三元组都是存在的 简单的思考后就会发现一个简单的思路,开头的数一定只出现一次,进而可以找到头或者尾部的第一个三元组,然后我们知道序列最 ...
- SharpDX初学者教程第5部分:着色三角形
原文 http://www.johanfalk.eu/blog/sharpdx-beginners-tutorial-part-5-coloring-the-triangle 在第4部分中,我们创建了 ...
- 一维数组的求平均成绩 Day06
package com.sxt.arraytest1; /* * 求班里学生的平均成绩,以及成绩的综合 输出每个同学的成绩 */ import java.util.Arrays; import jav ...
- @loj - 2093@ 「ZJOI2016」线段树
目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 Yuuka 遇到了一个题目:有一个序列 a1,a2,..., ...
- TCP/IP,UDP,HTTP,SOCKET之间的区别和关系
TCP/IP TCP/IP代表传输控制协议/网际协议,指的是一系列协组.可分为四个层次:数据链路层.网络层.传输层和应用层. 在网络层:有IP协议.ICMP协议.ARP协议.RARP协议和BOOTP协 ...