TopCoder[SRM513 DIV 1]:Reflections(1000)
|
题意大致是:在三维空间中,从原点走到(x,y,z),每次可以向六个方向中的一个方向走一步,或者沿一面镜子对称,问至少行动多少次可以到达终点。
每面镜子都是垂直于x轴、y轴、z轴中的一条轴的平面,且垂直于一条轴的镜子数最多为20。每面镜子最多被用来对称一次。
题解:
代码来自TopCoder Wiki。
若直接进行移动,则只会改变三维中的一维,做对称也一样,所以三维可以分开讨论。
因为镜像操作只是进行对称,所以直接移动可以放在最后进行。这样,我们只要搜索按哪种顺序选用了哪些镜子,将得到的坐标与终点做差,即为在这个维度直接移动的次数。
直接枚举显然会超时,我们可以考虑优化。
考虑垂直于x轴的镜子的操作:若点坐标为a,镜子坐标为b,则对称后点坐标为2*b-a。
经过一系列对称,最终点坐标展开为(2*b[n]-2*b[n-1]+2*[b-2]-......-2*b[2]+2*b[1]-a)或(2*b[n]-2*b[n-1]+2*[b-2]-......+2*b[2]-2*b[1]+a)。
即某面被选用镜子操作的贡献只与选用顺序序号的奇偶性有关。
可以枚举n面奇数序号的镜子与n面偶数序号的镜子,原坐标贡献为正;或枚举n面奇数序号的镜子与n+1面偶数序号的镜子,原坐标贡献为负。
可是这样枚举依旧会TLE。
我们可以采用折半搜索,就不会TLE了,可是十分不好写。
事实上,我们可以分别枚举奇数序号镜子的集合与偶数序号镜子的集合,而不用考虑重复的情况。对于重复的情况,可以看做是一面镜子用了两次(效果等同于不使用),可以正常处理,但一定不是最优解。
枚举好后,用类似于折半搜索的做法合并即可。
代码:
class Reflections
{
public:
long long solve(vector<int>& M, int P)
{
int N = M.size();
// Compute the sum of each subset.
vector<long long> V[];
for(int i = ; i < << N; i++)
{
long long sum = ;
for(int j = ; j < N; j++) if(i & << j) sum += M[j] * 2ll;
V[__builtin_popcount(i)].push_back(sum);
}
// For each subset find the subset of the same or one lesser size that puts us closest to our target.
long long ret = abs(P);
for(int i = ; i <= (N + ) / ; i++)
{
sort(V[i].begin(), V[i].end());
for(int j = ; j < V[i].size(); j++)
{
// Find subsets of equal size that put us close to P.
int pos = upper_bound(V[i].begin(), V[i].end(), V[i][j] - P) - V[i].begin();
if(pos < V[i].size()) ret = min(ret, * i + abs(P - V[i][j] + V[i][pos]));
if(pos > ) ret = min(ret, * i + abs(P - V[i][j] + V[i][pos - ])); // Find subsets of one lesser size that put us close to P.
if(!i) continue;
pos = upper_bound(V[i - ].begin(), V[i - ].end(), V[i][j] - P) - V[i - ].begin();
if(pos < V[i - ].size()) ret = min(ret, * i - + abs(P - V[i][j] + V[i - ][pos]));
if(pos > ) ret = min(ret, * i - + abs(P - V[i][j] + V[i - ][pos - ]));
}
}
return ret;
}
long long minimumMoves(vector<int> X, vector<int> Y, vector<int> Z, vector<int> P)
{
return solve(X, P[]) + solve(Y, P[]) + solve(Z, P[]);
}
};
TopCoder[SRM513 DIV 1]:Reflections(1000)的更多相关文章
- TopCoder[SRM513 DIV 1]:PerfectMemory(500)
Problem Statement You might have played the game called Memoria. In this game, there is a board ...
- TopCoder SRM 560 Div 1 - Problem 1000 BoundedOptimization & Codeforces 839 E
传送门:https://284914869.github.io/AEoj/560.html 题目简述: 定义"项"为两个不同变量相乘. 求一个由多个不同"项"相 ...
- TopCoder SRM 558 Div 1 - Problem 1000 SurroundingGame
传送门:https://284914869.github.io/AEoj/558.html 题目简述 一个人在一个n * m棋盘上玩游戏,想要占领一个格子有两个方法: 在这个格子放一个棋子. 这个 ...
- TopCoder SRM 566 Div 1 - Problem 1000 FencingPenguins
传送门:https://284914869.github.io/AEoj/566.html 题目简述: 平面上有中心在原点,一个点在(r,0)处的正n边形的n个顶点.平面上还有m个企鹅,每个企鹅有一个 ...
- TopCoder SRM 561 Div 1 - Problem 1000 Orienteering
传送门:https://284914869.github.io/AEoj/561.html 题目简述: 题外话: 刚开始看题没看到|C|<=300.以为|C|^2能做,码了好久,但始终解决不了一 ...
- TopCoder SRM 582 Div 1 - Problem 1000 SemiPerfectPower
首先我们可以把答案差分,那么我们只需要求出\(1\)~\(x\)范围内的满足条件的数即可. 题目要求的应该是这个东西的个数: \(l \leq a*b^c \leq r(1 \le a < b) ...
- Topcoder SRM584 DIV 2 500
#include <set> #include <iostream> #include <string> #include <vector> using ...
- Topcoder SRM583 DIV 2 250
#include <string> #include <iostream> using namespace std; class SwappingDigits { public ...
- 【补解体报告】topcoder 634 DIV 2
A:应该是道语文题,注意边界就好: B:开始考虑的太复杂,没能够完全提取题目的思维. 但还是A了!我愚蠢的做法:二分答案加暴力枚举, 枚举的时候是完全模拟的,比如每次取得时候都是从大到小的去取,最后统 ...
随机推荐
- C语言之文件包含
c = #include <stdio.h> #include "A.h" int main() { /******************************** ...
- useradd -帐号建立或更新新使用者的资讯
总览 SYNOPSIS useradd [-c comment] [-d home_dir] [-e expire_date] [-f inactive_time] [-g initial_group ...
- 搜索进阶课件,视频,代码(状态压缩搜索,折半搜索,dfs,bfs总结)
链接:https://pan.baidu.com/s/1-svffrprCOO4CtQoCTQ9hQ 提取码:h909 复制这段内容后打开百度网盘手机App,操作更方便哦
- 利用reduce方法,对数组中的json对象去重
数组中的json对象去重 var arr = [{ "name": "ZYTX", "age": "Y13xG_4wQnOWK1Q ...
- leetcood学习笔记-107-二叉树的层次遍历二
题目描述: 方法一: class Solution(object): def levelOrderBottom(self, root): """ :type root: ...
- Batch - FOR %%a %%b
总结 %%a refers to the name of the variable your for loop will write to. Quoted from for /?: FOR %vari ...
- 深入浅出的Object.defineProperty()
vue的原理 观察者模式和订阅-发布者模式. Vue实例被创建时,会遍历data属性,并通过Object.defineProperty将 这些属性转化为getter/setter,并进行追踪依赖.每当 ...
- cut sort uniq wc 一 文本处理工具
cut cut是一个选取命令,就是将一段数据经过分析,取出我们想要的. 一般来说,选取信息通常是针对"行"来进行分析的,并不是整篇信息分析的. -c : 以字符为单位进行分割. c ...
- 11-MySQL-Ubuntu-数据表中数据的删除(四)
数据的删除(delete) (1)物理删除(不可逆,公司不会采取这种方法,如现在一般不会出现注销,数据具有无限价值) 删除整张表的数据!!! delete from 表名; 删除部分给定条件的数据: ...
- 【csp】2018-3
第一题 跳一跳 题目: 题意:浅显.qwq 题解:2计数+1,到1就清空计数. 代码: #include<iostream> #include<cstdio> #include ...