【OpenCV-Python】-图像形态学转化
原文为段立辉翻译,感谢Linux公社
此文档为自学转述,如有侵权请联系本人。
目标:
• 学习不同的形态学操作,例如腐蚀,膨胀,开运算,闭运算等
• 学习的函数有:cv2.erode(),cv2.dilate(),cv2.morphologyEx() 等
形态学转换原理:一般情况下对二值化图像进行操作。需要两个参数,一个是原始图像,第二个被称为结构化元素或者核,它是用来决定操作的性质的。基本操作为腐蚀和膨胀,他们的变体构成了开运算,闭运算,梯度等。
1、腐蚀
把前景物体的边界腐蚀掉,但是前景仍然是白色的。卷积核沿着图像滑动,如果与卷积核对应的原图像的所有像素值都是1,那么中心元素就保持原来的像素值,否则就变为零。根据卷积核的大小靠近前景的所有像素都会被腐蚀掉(变为0),所以前景物体会变小,整幅图像的白色区域会减少。这对于去除白噪音很有用,也可以用来断开两个连在一块的物体。
erosion = cv2.erode(img, kernel, iterations=1)
2、膨胀
与腐蚀相反,与卷积核对应的原图像的像素值中只要有一个是1,中心元素的像素值就是1。所以这个操作会增加图像中白色区域(前景)。一般在去噪音时先腐蚀再膨胀,因为腐蚀再去掉白噪音的同时,也会使前景对象变小,所以我们再膨胀。这时噪音已经被去除,不会再回来了,但是前景还在并会增加,膨胀也可以用来连接两个分开的物体。
dilation = cv2.dilate(img, kernel, iterations=1)
3、开运算
先进行腐蚀再进行膨胀就叫做开运算。被用来去除噪音,函数可以使用cv2.morphotogyEx()
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
4、闭运算
先膨胀再腐蚀。被用来填充前景物体中的小洞,或者前景上的小黑点。
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
5、形态学梯度
其实就是一幅图像膨胀与腐蚀的差别。结果看上去就像前景物体的轮廓。
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
6、礼帽
原始图像与进行开运算之后得到的图像的差。
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
7、黑帽
进行闭运算之后得到的图像与原始图像的差。
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel)
import cv2
import numpy as np img = cv2.imread('./opencv_learn/image3.png',0) kernel = np.ones((5,5),np.uint8)
# 腐蚀
erosion = cv2.erode(img, kernel, iterations=1)
# 膨胀
dilation = cv2.dilate(img, kernel, iterations=1)
# 开运算,先腐蚀在膨胀
opening = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# 闭运算,先膨胀在腐蚀
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
# 形态学梯度,腐蚀和膨胀的差别
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
# 礼貌,开运算后与原图的差
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
# 黑帽, 闭运算后与原图的差
blackhat = cv2.morphologyEx(img, cv2.MORPH_BLACKHAT, kernel) while(1):
cv2.imshow('img',img)
cv2.imshow('erosion',erosion)
cv2.imshow('dilation', dilation)
cv2.imshow('opening', opening)
cv2.imshow('closing',closing)
cv2.imshow('gradient',gradient)
cv2.imshow('tophat', tophat)
cv2.imshow('blackhat', blackhat)
k = cv2.waitKey(1)
if k == ord('q'):
break cv2.destroyAllWindows()

结构化元素
之前的例子都是使用numpy构建了结构化元素,但是是正方形的,若需要构建椭圆或者圆形的核,可以使用OpenCV提供的函数cv2.getStructuringElemenet(),只需要告诉它你需要的核的形状和大小。

【OpenCV-Python】-图像形态学转化的更多相关文章
- Python图像处理丨三种实现图像形态学转化运算模式
摘要:本篇文章主要讲解Python调用OpenCV实现图像形态学转化,包括图像开运算.图像闭运算和梯度运算 本文分享自华为云社区<[Python图像处理] 九.形态学之图像开运算.闭运算.梯度运 ...
- opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...
- 11、OpenCV Python 图像金字塔
__author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...
- 10、OpenCV Python 图像二值化
__author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...
- 8、OpenCV Python 图像直方图
__author__ = "WSX" import cv2 as cv import numpy as np from matplotlib import pyplot as pl ...
- 1、OpenCV Python 图像加载和保存
__author__ = "WSX" import cv2 as cv # 这里的文件是图片或者视频 def Save_File( image ): cv.imwrite(&quo ...
- 12、OpenCV Python 图像梯度
__author__ = "WSX" import cv2 as cv import numpy as np def lapalian_demo(image): #拉普拉斯算子 # ...
- 2、OpenCV Python 图像属性获取
__author__ = "WSX" import cv2 as cv import numpy as np image = cv.imread("1.JPG" ...
- 【图像处理】OpenCV+Python图像处理入门教程(七)图像形态学操作
图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉 ...
随机推荐
- 引用数据数据类型Scanner、Random
键盘录入Scanner 获取键盘录入的数据,对获取数据的具体操作进行了封装,只需要调用方法,即可得到键盘录入的数据 A:导包 import java.util.Scanner; ...
- Grails项目开发——前端请求跨域问题
Grails项目开发--前端请求跨域问题 最近做项目采用前后端分离的思想,使用Grails作为后台开发Restful API供前端调用. 在项目开发的过程中,遇到前端没办法通过ajax访问到后台接口的 ...
- Dubbo RPC源码解读
https://yq.aliyun.com/articles/272405#27 本文代码摘录的时候,将一些与本流程无关的内容去掉了,如有需要请看源码. 一.闲言碎语 使用rpc框架已经多年了,虽然之 ...
- Nutch 快速入门(Nutch 2.2.1+Hbase+Solr)
http://www.tuicool.com/articles/VfEFjm Nutch 2.x 与 Nutch 1.x 相比,剥离出了存储层,放到了gora中,可以使用多种数据库,例如HBase, ...
- NLP常用开源/免费工具
一些常见的NLP任务的开源/免费工具, *Computational Linguistics ToolboxCLT http://complingone.georgetown.edu/~linguis ...
- CentOS关机命令
Linux centos关机与重启命令详解与实战 Linux centos重启命令: 1.reboot 2.shutdown -r now 立刻重启(root用户使用) 3.shutdown -r 1 ...
- 如何跟踪sharepoint详细日志
PS C:\Users\setup.moss> Set-SPLogLevel -TraceSeverity verboseexPS C:\Users\setup.moss> New-SPL ...
- Ajax 如何执行 Response.Redirect
Ajax 直接对服务端的Response.Redirect是不感冒的, 另觅途径, 具体可行办法如下: Web Service 服务端: public WXService() { if (!IsVal ...
- 「HNOI 2013」消毒
题目链接 戳我 \(Solution\) 我们首先想一想如果这一题只是二维的该怎么办? 就是一个最小点覆盖问题.这里就不详细解释了,用网络流或匈牙利都无所谓. 但现在是三维的,那么现在该如何处理呢? ...
- 如何使用OpenGL中的扩展
如果你在Windows平台下开发OpenGL程序,那么系统中自带的OpenGL库就是1.1的,如果想使用1.2或者更高版本的OpenGL库,那么只能使用OpenGL扩展,在网上关于如何使用OpenGL ...