【POJ3621】Sightseeing Cows

题意:在给定的一个图上寻找一个环路,使得总欢乐值(经过的点权值之和)/ 总时间(经过的边权值之和)最大。

题解:显然是分数规划,二分答案ans,将每条边的权值变成(ans*边权-2*起始点点权),然后我们希望找出一个环,使得环上的总边权<0

(一开始我把题意理解错了,题中给的是单向边,我把它当成是双向边+每条边只能走一次了~,想出一堆做法都接连pass掉)

然后就直接用SPFA判负环就好了嘛!由于原图不一定联通,所以一开始就把所有点都入队就完事了

#include <cstdio>
#include <iostream>
#include <queue>
#include <cstring>
using namespace std;
int n,m,cnt;
int f[1010],to[10010],next[10010],head[1010];
int pa[5010],pb[5010],pt[5010],len[1010],inq[1010];
double dis[1010],val[10010];
queue<int> q;
void add(int a,int b,double c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
int solve(double sta)
{
memset(head,-1,sizeof(head));
memset(len,0,sizeof(len));
cnt=0;
int i,u;
for(i=1;i<=m;i++) add(pa[i],pb[i],sta*pt[i]-f[pa[i]]);
while(!q.empty()) q.pop();
for(i=1;i<=n;i++) q.push(i),dis[i]=0.0,len[i]=1;
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+val[i]+1e-4)
{
dis[to[i]]=dis[u]+val[i];
len[to[i]]=len[u]+1;
if(len[to[i]]>n) return 1;
if(!inq[to[i]])
{
inq[to[i]]=1;
q.push(to[i]);
}
}
}
}
return 0;
}
int main()
{
scanf("%d%d",&n,&m);
int i,a,b,c;
double l=0.0,r=0.0,mid;
for(i=1;i<=n;i++) scanf("%d",&f[i]),r=max(r,1.0*f[i]);
for(i=1;i<=m;i++) scanf("%d%d%d",&pa[i],&pb[i],&pt[i]);
while(r-l>1e-4)
{
mid=(l+r)*0.5;
if(solve(mid)) l=mid;
else r=mid;
}
printf("%.2f",l);
return 0;
}

【POJ3621】Sightseeing Cows 分数规划的更多相关文章

  1. POJ3621 Sightseeing Cows(最优比率环)

    题目链接:id=3621">http://poj.org/problem?id=3621 在一个有向图中选一个环,使得环上的点权和除以边权和最大.求这个比值. 经典的分数规划问题,我认 ...

  2. POJ3621 Sightseeing Cows 最优比率环 二分法

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  3. poj3621 Sightseeing Cows

    01分数规划 二分+spfa负环(SLF优化) #include<cstdio> #include<iostream> #include<cstring> #inc ...

  4. poj3621 Sightseeing Cows --- 01分数规划

    典型的求最优比例环问题 參考资料: http://blog.csdn.net/hhaile/article/details/8883652 此题中,给出每一个点和每条边的权值,求一个环使 ans=∑点 ...

  5. POJ3621 Sightseeing Cows【最短路】

    题目大意:在一个无向图里找一个环,是的点权和除以边权和最大 思路:UVA11090姊妹题 事实上当这题点权和都为1时就是上一题TUT #include <stdio.h> #include ...

  6. [转]01分数规划算法 ACM 二分 Dinkelbach 最优比率生成树 最优比率环

    01分数规划 前置技能 二分思想最短路算法一些数学脑细胞? 问题模型1 基本01分数规划问题 给定nn个二元组(valuei,costi)(valuei,costi),valueivaluei是选择此 ...

  7. 【POJ3621】【洛谷2868】Sightseeing Cows(分数规划)

    [POJ3621][洛谷2868]Sightseeing Cows(分数规划) 题面 Vjudge 洛谷 大意: 在有向图图中选出一个环,使得这个环的点权\(/\)边权最大 题解 分数规划 二分答案之 ...

  8. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  9. [USACO07DEC]Sightseeing Cows(负环,0/1分数规划)

    [USACO07DEC]Sightseeing Cows Description Farmer John has decided to reward his cows for their hard w ...

随机推荐

  1. Aperture Time与NPLC

    NPLC工频周期数 NPLC是采样电源的周期倍数,N代表是多少倍,PLC与采样电源有关 交流电源的干扰是很厉害的.为了减少交流电源的干扰,一个常用的方法就是把测量周期尽可能的取成交流周波的整数倍,这样 ...

  2. struts2 s:set标签

    set标签是将某个值放到指定范围内, 比如说 student.teacher.parent.age 每次访问这个属性不仅性能低,而且代码可读性很差,为了解决这个问题,可以将这个值设置为一个新值,并且放 ...

  3. 快速过滤出完整的SQL语句

    [root@bass ca]# mysqlbinlog -- |egrep -v "^(/|SET|BEGIN|COMMITER|#|COMMIT)" >a.log [roo ...

  4. java学习之局部变量以及全局变量

    全局变量 什么是全局变量? 全局变量就好比一个容器或者一个公用的东西一样,就类似外面公共场所的凳子一样,大家都可以使用这个凳子. 和他相反的局部变量是啥子东东呢? 局部变量就是局部的东西,如果全局变量 ...

  5. jquery ajaxSubmit

    <script type="text/javascript" src="jquery/jquery.js"></script></ ...

  6. 未能加载文件或程序集“Autofac, Version=3.4.0.0,

    遇到这个错误的时候:如下图 未能加载文件或程序集“Autofac, Version=3.4.0.0, Culture=neutral, PublicKeyToken=17863af14b0044da” ...

  7. 10个 jQuery 小技巧

    10个 jQuery 小技巧 -----整理by: xiaoshuai 1. 返回顶部按钮 可以利用 animate 和 scrollTop 来实现返回顶部的动画,而不需要使用其他插件. // Bac ...

  8. css中!important的用法总结

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  9. python 神经网络实例

    #http://python.jobbole.com/82758/ # import numpy as np # # # # sigmoid function # def nonlin(x, deri ...

  10. [web开发] php优势 - PHP与ASP.NET的比较

    php 优势 - PHP与ASP.NET的比较 如今当提到 Web 开发时,您有许多选择.这些方法中许多都涉及到预处理 — 即,利用特定的标记将代码嵌入到 HTML 页面中,这些标记告诉预处理器,它们 ...