https://vjudge.net/problem/UVA-11354

题意:

有n个城市m条道路,每条道路有一个危险系数。先在有若干个询问,要求找到一条从s到t的路,使得途径所有边的最大危险系数最小。

思路:

最小瓶颈路肯定是在最小生成树上的。所有先求最小生成树。

然后将它转化成有根树,让fa[i]和cost[i]分别表示结点i的父亲编号和它与父亲之间的边权L[i]表示结点i的深度。

anc[i][j]表示结点i的第2^j级祖先的编号(j==0时候就是fa[i],如果第2^j祖先不存在,设为-1)。

maxcost[i][j]表示结点i和第2^j级祖先之间路径上的最大权值。

 #include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<string>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
typedef long long LL;
const int maxn=+;
const int INF=0x3f3f3f; struct node
{
int u,v,d;
bool operator < (const node& rhs) const
{
return d<rhs.d;
}
}edge[*maxn]; int n,m;
int cnt;
int p[maxn];
vector<int> g[maxn];
vector<int> c[maxn]; int find(int x)
{
return x==p[x]?x:p[x]=find(p[x]);
} struct LCA
{
int n;
int fa[maxn];
int cost[maxn];
int L[maxn];
int anc[maxn][]; //结点i的第(1<<j)级祖先编号,anc[i][0]就是父亲fa[i],anc[i][j]=-1表示该祖先不存在
int maxcost[maxn][]; //结点i和它的(1<<j)级祖先之间的路径上的最大权值 void preprocess() //预处理
{
for(int i=;i<n;i++)
{
anc[i][]=fa[i]; maxcost[i][]=cost[i];
for(int j=;(<<j)<n;j++) anc[i][j]=-;
}
for(int j=;(<<j)<n;j++)
{
for(int i=;i<n;i++)
if(anc[i][j-]!=-)
{
int a=anc[i][j-];
anc[i][j]=anc[a][j-];
maxcost[i][j]=max(maxcost[i][j-],maxcost[a][j-]);
}
}
} int query(int p,int q)
{
int tmp, log, i;
if(L[p] < L[q]) swap(p,q);
for(log=; (<<log) <= L[p]; log++); log--; int ans=-INF;
for(int i=log; i>=;i--)
if(L[p]-(<<i)>=L[q]) //让p和q处于同一层
{
ans=max(ans,maxcost[p][i]);
p=anc[p][i];
} if(p==q) return ans; //LCA为p for(int i=log;i>=;i--)
if(anc[p][i]!=-&&anc[p][i]!=anc[q][i])//否则,让p,q同时往上爬,保证爬的时候始终处于同一层
{
ans=max(ans,maxcost[p][i]);p=anc[p][i];
ans=max(ans,maxcost[q][i]);q=anc[q][i];
}
ans=max(ans,cost[p]);
ans=max(ans,cost[q]);
return ans; //LCA为fa[p](或fa[q])
}
}solver; void MST()
{
sort(edge,edge+cnt);
int num=;
for(int i=;i<cnt;i++)
{
int x=edge[i].u,y=edge[i].v;
int u=find(x),v=find(y);
if(u!=v)
{
p[u]=v;
g[x].push_back(y); c[x].push_back(edge[i].d);
g[y].push_back(x); c[y].push_back(edge[i].d);
if(++cnt==n-) break;
}
}
} void dfs(int u,int fa,int level) //无根树转有根树
{
solver.L[u]=level;
for(int i=;i<g[u].size();i++)
{
int v=g[u][i];
if(v!=fa)
{
solver.fa[v]=u;
solver.cost[v]=c[u][i]; //cost就是v点到其父亲结点的权值
dfs(v,u,level+);
}
}
} int main()
{
//freopen("D:\\input.txt","r",stdin);
int kase=;
while(~scanf("%d%d",&n,&m) && n)
{
cnt=;
for(int i=;i<n;i++) {p[i]=i;g[i].clear();c[i].clear();}
for(int i=;i<m;i++)
{
int x,y,d;
scanf("%d%d%d",&x,&y,&d);
edge[cnt].u=x-;
edge[cnt].v=y-;
edge[cnt].d=d;
cnt++;
}
MST();
dfs(,-,);
solver.n=n;
solver.preprocess();
int q;
if(kase++!=) puts("");
scanf("%d",&q);
while(q--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",solver.query(x-,y-));
}
}
return ;
}

UVa 11354 邦德(最小瓶颈路+LCA)的更多相关文章

  1. UVA 11354 Bond(最小瓶颈路+倍增)

    题意:问图上任意两点(u,v)之间的路径上,所经过的最大边权最小为多少? 求最小瓶颈路,既是求最小生成树.因为要处理多组询问,所以需要用倍增加速. 先处理出最小生成树,prim的时间复杂度为O(n*n ...

  2. 最小瓶颈路 Uva 534 Frogger

    说明:关于Uva的题目,可以在vjudge上做的,不用到Uva(那个极其慢的)网站去做. 最小瓶颈路:找u到v的一条路径满足最大边权值尽量小 先求最小生成树,然后u到v的路径在树上是唯一的,答案就是这 ...

  3. LOJ#137. 最小瓶颈路 加强版(Kruskal重构树 rmq求LCA)

    题意 三倍经验哇咔咔 #137. 最小瓶颈路 加强版 #6021. 「from CommonAnts」寻找 LCR #136. 最小瓶颈路 Sol 首先可以证明,两点之间边权最大值最小的路径一定是在最 ...

  4. 【uva 534】Frogger(图论--最小瓶颈路 模版题)

    题意:平面上有N个石头,给出坐标.一只青蛙从1号石头跳到2号石头,使路径上的最长便最短.输出这个值.(2≤N≤200) 解法:最小瓶颈树.而由于这题N比较小便可以用2种方法:1.最短路径中提到过的Fl ...

  5. CF600 div2 F.Cheap Robot(思维+最短路+最小瓶颈路)

    最开始啃这题的时候我还是个不会$lca$的人,看代码看的没有一点头绪,现在趁着寒假补了很多关于图论的知识点,回头在看这题还是有很多值得学习的地方. Solution 1 (offline): 原题解: ...

  6. UVALive 5713 Qin Shi Huang's National Road System秦始皇修路(MST,最小瓶颈路)

    题意: 秦始皇要在n个城市之间修路,而徐福声可以用法术位秦始皇免费修1条路,每个城市还有人口数,现要求徐福声所修之路的两城市的人口数之和A尽量大,而使n个城市互通需要修的路长B尽量短,从而使得A/B最 ...

  7. 【UVA534】Frogger 最小瓶颈路

    题目大意:给定一张 N 个点的完全图,求 1,2 号节点之间的一条最小瓶颈路. 题解:可知,最小瓶颈路一定存在于最小生成树(最小瓶颈树)中.因此,直接跑克鲁斯卡尔算法,当 1,2 号节点在同一个联通块 ...

  8. 【20181102T2】飞越行星带【智商题+最小瓶颈路】

    题面 [正解] 一眼不可做啊 --相当于求路线上穿过的点最小距离最大 最小最大--二分啊 现在相当于给一个直径,要判断这个直径是否能从左边穿到右边 我们可以在距离不超过直径的点连一条边,\(y=0\) ...

  9. 【UVA10816】Travel in Desert (最小瓶颈路+最短路)

    UVA10816 Travel in Desert 题目大意 沙漠中有一些道路,每个道路有一个温度和距离,要求s,t两点间的一条路径,满足温度最大值最小,并且长度最短 输入格式 输入包含多组数据. 每 ...

随机推荐

  1. #define宏定义

    1 #define的概念  #define命令是C语言中的一个宏定义命令,它用来将一个标识符定义为一个字符串,该标识符被称为宏名,被定义的字符串称为替换文本.  该命令有两种格式:一种是简单的宏定义, ...

  2. Cassandra go语言client使用

    关于什么是cassandra,可以参考: http://blog.csdn.net/zyz511919766/article/details/38683219 http://cassandra.apa ...

  3. SDUT3143:Combinatorial mathematics(组合数学)

    题意:传送门 题目描述 As you know, shadow95 is pretty good at maths, especially combinatorial mathematics. Now ...

  4. 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)

    上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...

  5. PKU 1094 Sorting It All Out(拓扑排序)

    题目大意:就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列. 是典型的拓扑排序,但输出格式上确有三种形式: 1.该字母序列有序,并依次输出: 2.判断该序列是否唯一: 3.该序列字母次序之间 ...

  6. Java设计原则—单一职责原则(转)

    定义: 应该有且仅有一个原因引起类的变更. There should never be more than one reason for a class to change. 优点: 1.类的复杂性降 ...

  7. vue指令与组件

    参考http://blog.csdn.net/lioldamon/article/details/74058222?utm_source=itdadao&utm_medium=referral ...

  8. 3.1.7. Cross validation of time series data

    3.1.7. Cross validation of time series data Time series data is characterised by the correlation bet ...

  9. 【1】Kali Linux的安装及配置

    爱生活就得够GEEK. ---------------------------------------------------------------完美的分割线------------------- ...

  10. 你知道C语言为什么会有“_”(下划线)吗?

    学过C语言的都知道,变量名只能由字母.数字.下划线组成,且只能以字母或者下划线开头. 学英语时我们都学过连字符(“-”),这个东东主要用来连接单词的.那么C语言为什么不直接 用连字符,而要改用下划线呢 ...