SHUOJ Arithmetic Sequence (FFT)
题意:求一个序列中,有多少三元组(其中元素不重复)在任意的排列下能构成等差数列。
分析:等差数列:\(A_j-A_i=A_k-A_j\),即\(2A_j=A_i+A_k\),枚举\(A_i+A_j\)的所有情况对应的个数,再扫一遍求解。
先统计出每个数对应的出现次数,FFT计算出和的组合情况。但是要减去\(A_i+A_i\)得到的结果以及\(A_i+A_j\)以及\(A_j+A_i\)重复的计算。
现在对于数\(A_j\),假设\(cnt=2*A_j\)的系数,当然cnt中要减去\(A_j\)本身和一个值与\(A_j\)相等的数组合而成的情况。枚举完这个数以后,把这个数从序列中抹去,因为这个数对结果做出的贡献已经计算,之后的统计中该数以及该数对结果的贡献不能重复计算。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 1e5 + 10;
const double PI = acos(-1.0);
struct Complex{
double x, y;
inline Complex operator+(const Complex b) const {
return (Complex){x +b.x,y + b.y};
}
inline Complex operator-(const Complex b) const {
return (Complex){x -b.x,y - b.y};
}
inline Complex operator*(const Complex b) const {
return (Complex){x *b.x -y * b.y,x * b.y + y * b.x};
}
} va[MAXN * 2 + MAXN / 2], vb[MAXN * 2 + MAXN / 2];
int lenth = 1, rev[MAXN * 2 + MAXN / 2];
int N, M; // f 和 g 的数量
//f g和 的系数
// 卷积结果
// 大数乘积
int f[MAXN],g[MAXN];
vector<LL> conv;
vector<LL> multi;
void debug(){for(int i=0;i<conv.size();++i) cout<<conv[i]<<" ";cout<<endl;}
//f g
void init()
{
int tim = 0;
lenth = 1;
conv.clear(), multi.clear();
memset(va, 0, sizeof va);
memset(vb, 0, sizeof vb);
while (lenth <= N + M - 2)
lenth <<= 1, tim++;
for (int i = 0; i < lenth; i++)
rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (tim - 1));
}
void FFT(Complex *A, const int fla)
{
for (int i = 0; i < lenth; i++){
if (i < rev[i]){
swap(A[i], A[rev[i]]);
}
}
for (int i = 1; i < lenth; i <<= 1){
const Complex w = (Complex){cos(PI / i), fla * sin(PI / i)};
for (int j = 0; j < lenth; j += (i << 1)){
Complex K = (Complex){1, 0};
for (int k = 0; k < i; k++, K = K * w){
const Complex x = A[j + k], y = K * A[j + k + i];
A[j + k] = x + y;
A[j + k + i] = x - y;
}
}
}
}
void getConv(){ //求多项式
init();
for (int i = 0; i < N; i++)
va[i].x = f[i];
for (int i = 0; i < M; i++)
vb[i].x = g[i];
FFT(va, 1), FFT(vb, 1);
for (int i = 0; i < lenth; i++)
va[i] = va[i] * vb[i];
FFT(va, -1);
for (int i = 0; i <= N + M - 2; i++)
conv.push_back((LL)(va[i].x / lenth + 0.5));
}
void getMulti() //求A*B
{
getConv();
multi = conv;
reverse(multi.begin(), multi.end());
multi.push_back(0);
int sz = multi.size();
for (int i = 0; i < sz - 1; i++){
multi[i + 1] += multi[i] / 10;
multi[i] %= 10;
}
while (!multi.back() && multi.size() > 1)
multi.pop_back();
reverse(multi.begin(), multi.end());
}
int a[MAXN];
int cnt[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int T; scanf("%d",&T);
while(T--){
int n; scanf("%d",&n);
int mx = -1;
memset(cnt,0,sizeof(cnt));
for(int i =1;i<=n;++i){
scanf("%d",&a[i]);
mx = max(mx,a[i]);
cnt[a[i]]++;
}
N = M = mx+1;
for(int i=0;i<N;++i){
f[i] = g[i] = cnt[i];
}
getConv();
int sz = conv.size();
for(int i=1;i<=n;++i){
conv[a[i]*2]--;
}
for(int i=0;i<sz;++i){
conv[i]>>=1;
}
LL res=0;
//debug();
//sort(a+1,a+n+1);
for(int i=1;i<=n;++i){
if(2*a[i]>=sz) continue;
LL tmp = conv[2*a[i]];
tmp -= cnt[a[i]]-1; //减去由自己构成的
conv[2*a[i]] -= cnt[a[i]]-1; //将Ai对结果的贡献抹去
cnt[a[i]]--; //将Ai从原序列中抹去
res += tmp;
}
printf("%lld\n",res);
}
return 0;
}
SHUOJ Arithmetic Sequence (FFT)的更多相关文章
- hdu 5400 Arithmetic Sequence
http://acm.hdu.edu.cn/showproblem.php?pid=5400 Arithmetic Sequence Time Limit: 4000/2000 MS (Java/Ot ...
- hdu 5400 Arithmetic Sequence(模拟)
Problem Description A sequence b1,b2,⋯,bn are called (d1,d2)-arithmetic sequence ≤i≤n) such that ≤j& ...
- Arithmetic Sequence(dp)
Arithmetic Sequence Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 51 Solved: 19[Submit][Status][We ...
- [Swift]LeetCode1027. 最长等差数列 | Longest Arithmetic Sequence
Given an array A of integers, return the length of the longest arithmetic subsequence in A. Recall t ...
- (模拟)Arithmetic Sequence -- HDU -- 5400
链接: http://acm.hdu.edu.cn/showproblem.php?pid=5400 Time Limit: 4000/2000 MS (Java/Others) Memory ...
- HZAU 21——Arithmetic Sequence——————【暴力 or dp】
Arithmetic Sequence Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 1810 Solved: 311[Submit][Status] ...
- 华中农业大学第四届程序设计大赛网络同步赛-1020: Arithmetic Sequence,题挺好的,考思路;
1020: Arithmetic Sequence Time Limit: 1 Sec Memory Limit: 128 MB Submit: ->打开链接<- Descriptio ...
- LeetCode 1027. Longest Arithmetic Sequence
原题链接在这里:https://leetcode.com/problems/longest-arithmetic-sequence/ 题目: Given an array A of integers, ...
- 【leetcode】1027. Longest Arithmetic Sequence
题目如下: Given an array A of integers, return the length of the longest arithmetic subsequence in A. Re ...
随机推荐
- WPF进阶之接口(4):ICommand实现详解
上一章WPF进阶之接口():INotifyPropertyChanged,ICommand中我们遗留了几个问题,我将在本节中做出解释.在详细解释ICommand实现之前,我们现在关注一下什么是:弱引用 ...
- Python tushare 初步了解
一.安装 1.Python 2.numpy 3.pandas 4.lxml 5.............. n.tushare 二.初步测试
- 计算某个目录下所有文件的MD5值
#!/usr/bin/env python #-*- coding:utf-8 -*- ''' 计算某个目录下所有文件的MD5值 ''' import os import sys import has ...
- css从中挖去一个圆
始终居中: width: 300px; position: fixed; /*在可视区域的上下左右居中*/ top: calc(50vh - 200px); left: calc(50vw - 150 ...
- 【BZOJ1898】[Zjoi2005]Swamp 沼泽鳄鱼 矩阵乘法
[BZOJ1898][Zjoi2005]Swamp 沼泽鳄鱼 Description 潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区.每当雨季来临,这里碧波荡漾.生机盎 ...
- 《从零开始学Swift》学习笔记(Day67)——Cocoa Touch设计模式及应用之MVC模式
原创文章,欢迎转载.转载请注明:关东升的博客 MVC(Model-View-Controller,模型-视图-控制器)模式是相当古老的设计模式之一,它最早出现在Smalltalk语言中.现在,很多计算 ...
- FZU 2140 Forever 0.5(找规律,几何)
Problem 2140 Forever 0.5 Accept: 371 Submit: 1307 Special Judge Time Limit: 1000 mSec Memory Limit : ...
- greenplum-cc-web4.0监控安装
简介: 本文是基于greenplum5.7,greenplum-cc-web4.0安装的. 一.安装greenplum监控的数据库以及创建用户(在gpadmin用户下安装) 1.开启greenplum ...
- EntityFramework.DynamicFilters 实现软删除和租户过滤
EntityFramework.DynamicFilters 实现软删除和租户过滤
- 通过Nginx反向代理实现IP分流
通过Nginx做反向代理来实现分流,以减轻服务器的负载和压力是比较常见的一种服务器部署架构.本文将分享一个如何根据来路IP来进行分流的方法. 根据特定IP来实现分流 将IP地址的最后一段最后一位为0或 ...