12.支持向量机

觉得有用的话,欢迎一起讨论相互学习~Follow Me

12.4 核函数与标记点- Kernels and landmarks

问题引入

  • 如果你有以下的训练集,然后想去拟合其能够分开正负样本的非线性判别边界。

    • 一种办法是构造一个复杂多项式特征的集合:
      \[h_{\theta}(x)=\begin{cases}
      1\ \ if\ \ \theta_{0}+\theta_{1}x_1+\theta_{2}x_2+\theta_{3}x_1x_2+\theta_{4}x_{1}^{2}+\theta_{5}x_{2}^{2}+...\ge 0\\
      0\ \ otherwise\ \
      \end{cases}
      \]
  • 然而类似于\(x_1x_2或x_1^2及x_2^2\)等人为定义的特征是不是最好的呢?我们能不能通过函数来进行学习得到更复杂拟合度更高的特征来解决非线性问题呢?此时我们可以借助于待定系数法,把不同的特征看做是待定的未知的目标进行确定 , 使用\(f_n\)表示待定的目标特征。
    • 即新的表达式为:
      \[h_{\theta}(x)=\begin{cases}
      1\ \ if\ \ \theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3+\theta_{4}f_4+\theta_{5}f_5+\theta_{6}f_6+...\ge 0\\
      0\ \ otherwise\ \
      \end{cases}
      \]

      特征构建

  • 假设此处需要构建3个新特征。
    • 首先在坐标\(x_1和x_2\)上选取三个 地标(landmark) \(l^{(1)},l^{(2)},l^{(3)}\)
    • 然后给定一个样本x, 定义特征\(f_1\)为样本x和地标\(l^{(1)}\)的相似度
      \[f_1=similarity(x,l^{(1)})=exp(-\frac{||x-l^{(1)}||^2}{2\sigma^{2}})\]
    • 同样的 定义特征\(f_2\)为样本x和地标\(l^{(2)}\)的相似度
      \[f_2=similarity(x,l^{(2)})=exp(-\frac{||x-l^{(2)}||^2}{2\sigma^{2}})\]
    • 类似的 定义特征\(f_3\)为样本x和地标\(l^{(3)}\)的相似度
      \[f_3=similarity(x,l^{(3)})=exp(-\frac{||x-l^{(3)}||^2}{2\sigma^{2}})\]
  • 此处的 相似度函数 即\(exp(-\frac{||x-l^{(n)}||^2}{2\sigma^{2}})\) 就是所说的 核函数 ,而核函数有很多种,即有很多种不同的定义相似度的方法,此处的核函数被称为 高斯核函数(Gaussian Kernel)

    核函数和相似度

  • 公式的展开项如下图所示,从图中可以看出
    • 当x和landmark十分接近时,特征值为约等于1
    • 当x和landmark距离很远时,特征值为约等于0

      高斯核函数(Gaussian Kernel)

  • 假设 地标1 的坐标为(3,5),使用3D图中,即时水平面上对应的坐标为(3,5),核函数使用高斯核,其中 \(\sigma^{2}=1\)
  • 等高线表示函数下降的速度 ,以下显示不同\(\sigma\) 对高斯函数陡峭程度的影响,很明显看出 \(\sigma=0.5\) 时下降更快,而 \(\sigma=3\) 时下降速度减缓:

    特征点及边界确定过程

  1. 规定当\(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\ge 0\)时输出1
  2. 假设已经得到参数为\(\theta_0=-0.5,\theta_1=1,\theta_2=1,\theta_3=0\)
    1. 当给定的训练样本为图中 粉色点 时,此时由于x距离l1较近,所以根据高斯核模型,f1约等于1;而x距离l2,l3都较远,所以f2,f3约等于0
    2. 此时,将上述参数带入,则\(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\)的值约等于0.5大于0,因此这个点预测的y值为1
    3. 当给定的训练样本为图中 蓝绿色点 时,此时由于x距离l1,l2,l3都较远,根据高斯核模型,f1,f2,f3都约等于0,此时,将上述参数带入,则\(\theta_0+\theta_{1}f_1+\theta_{2}f_2+\theta_{3}f_3\)的值约等于-0.5,因此这个点预测的y值为0
  3. 当你对 大量 的训练样本都进行这样的处理,最终会发现一条由大量点组成的 边界 ,显示 距离各个地标何种距离下 输出预测y会为1,否则y会为0.
  4. Note 在预测时,采用的不是训练实例本身的特征,而是通过核函数计算出的新特征\(f_1,f_2,f_3\)

[吴恩达机器学习笔记]12支持向量机4核函数和标记点kernels and landmark的更多相关文章

  1. [吴恩达机器学习笔记]12支持向量机5SVM参数细节

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...

  2. [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...

  3. [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...

  4. [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...

  5. [吴恩达机器学习笔记]12支持向量机6SVM总结

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 12.6SVM总结 推荐使用成熟的软件包 用以解决 SVM 最优化问题的软件很复杂,且已经有研究者做了很多年数值优化.因此强烈 ...

  6. 吴恩达机器学习笔记(六) —— 支持向量机SVM

    主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...

  7. 吴恩达机器学习笔记45-使用支持向量机(Using A SVM)

    本篇我们讨论如何运行或者运用SVM. 在高斯核函数之外我们还有其他一些选择,如:多项式核函数(Polynomial Kernel)字符串核函数(String kernel)卡方核函数( chi-squ ...

  8. Coursera-AndrewNg(吴恩达)机器学习笔记——第一周

    一.初识机器学习 何为机器学习?A computer program is said to learn from experience E with respect to some task T an ...

  9. Machine Learning——吴恩达机器学习笔记(酷

    [1] ML Introduction a. supervised learning & unsupervised learning 监督学习:从给定的训练数据集中学习出一个函数(模型参数), ...

随机推荐

  1. CSS3在线实战

    作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正. 本节课视频网站:https://www ...

  2. Masha and Bears(翻译+思维)

    Description A family consisting of father bear, mother bear and son bear owns three cars. Father bea ...

  3. 第二次c艹作业

    1,c语言实现方法:按照电梯运行方式,改变被定义为全局变量的结构体的数值. c艹实现方法:用类来存放电梯的属性,整个过程都是对类操作. 两者不同:c语言是面向过程的,整个函数里都要对电梯的参数进行修改 ...

  4. 设计 Azure SQL 数据库,并使用 C# 和 ADO.NET 进行连接

    标题:设计 Azure SQL 数据库,并使用 C# 和 ADO.NET 进行连接 里面有使用C#使用SqlServer的例子.

  5. Hadoop环境搭建(三)

    长久没用了,再次登陆Ubuntu的时候提醒密码错误,然后就进入了guest session,依然可以进入系统进行工作但身份是guest,于是开始了找回密码的漫漫长路. 首先,在guest模式下,右上角 ...

  6. testng几种写法

    testng几种写法: 1 <!--运行-类--> 2 <?xml version="1.0" encoding="UTF-8"?> 3 ...

  7. PHP中关于取模运算及符号

    执行程序段<?php  echo 8%(-2) ?>,输出结果是: %为取模运算,以上程序将输出0 $a%$b,其结果的正负取决于$a的符号. echo ((-8)%3);     //将 ...

  8. Kafka生产者各种启动参数说明

    首先是启动一个生产者 final String kafkazk="localhost:9092"; String topic="testAPI"; Proper ...

  9. ONS发布订阅消息

    ONS, 全名Open Notification Service, 是阿里基于开源消息中间件RocketMQ的一个云产品. 首先,要申请阿里账号等.本地也可以申请阿里云账号自己调试.此处为公司拥有阿里 ...

  10. 【Linux笔记】CentOS yum 安装 vsftpd

    vsftpd是一款在Linux发行版中最受推崇的FTP服务器程序.特点是小巧轻快,安全易用,下面直接上干货. 一.安装vsftp 以管理员的身份使用yum命令安装vsftp: [root@localh ...