nyoj164——卡特兰数(待填坑)
题意:将1~2n个数按照顺时针排列好,用一条线将两个数字连接起来要求:线之间不能有交点,同一个点只允许被连一次。
最后问给出一个n,有多少种方式满足条件。
卡特兰数(列):
令h(0)=1,h(1)=1,catalan数满足递推式:h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>=2)
例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2 h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5
另类递推式: h(n)=h(n-1)*(4*n-2)/(n+1);
递推关系的解为: h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
递推关系的另类解为: h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)
一些方面的应用:
1. 括号化:矩阵连乘:P=a1×a2×a3×……×an,依据乘法结合律,不改变其顺序,只用括号表示成对的乘积,试问有几种括号化的方案?(h(n-1)种)
2.一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
3.给定n个点求能组成的二叉树所有总数。
4. 凸多边形三角划分(任意两顶点之间的连线必能相交),求有多少中分割的方法(类似:在圆上选择2n个点,将这些点成对连接起来使得所得到的n条线段不相交的方法数)
5. n层阶梯切割为n个矩形的切割方法总数
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = ;
const int moder = ;
int a[][];
void catalan()
//求卡特兰数,a[i][j]存储的是第i个逆序(高位在后)的卡特兰数(从0开始),且未对高位0进行处理
{
int i, j, len, carry, temp;
a[][] = ;
len = ;
for(i = ; i <= ; i++)
{
for(j = ; j < len; j++) //乘法
a[i][j] = a[i-][j]*(*(i-)+);
carry = ;
for(j = ; j < len; j++) //处理相乘结果
{
temp = a[i][j] + carry;
a[i][j] = temp % ;
carry = temp / ;
}
while(carry) //进位处理
{
a[i][len++] = carry % ;
carry /= ;
}
carry = ;
for(j = len-; j >= ; j--) //除法
{
temp = carry* + a[i][j];
a[i][j] = temp/(i+);
carry = temp%(i+);
}
}
}
int main()
{
int n;
catalan() ;
while(scanf("%d",&n) ,n != -)
{
int flag = ;
for(int i = ;i >= ;i--)//处理高位
{
if(a[n][i] != )
flag = ;
if(flag)
printf("%d",a[n][i]);
}
printf("\n");
}
return ;
}
————不是很懂
nyoj164——卡特兰数(待填坑)的更多相关文章
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- bootstrap-table填坑之旅<一>认识bootstrap-table
应公司需求,改版公司ERP的数据显示样式.由于前期开发的样式是bootstrap,所以选bootstrap-table理所当然(也是因为看了bootstrap-table官网的example功能强大, ...
- React Native填坑之旅--与Native通信之iOS篇
终于开始新一篇的填坑之旅了.RN厉害的一个地方就是RN可以和Native组件通信.这个Native组件包括native的库和自定义视图,我们今天主要设计的内容是native库方面的只是.自定义视图的使 ...
- HDU-4828 卡特兰数+带模除法
题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 卡特兰数(Catalan)简介
Catalan序列是一个整数序列,其通项公式是 h(n)=C(2n,n)/(n+1) (n=0,1,2,...) 其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- Node填坑教程——前言
Node是什么? Node 是一个服务器端 JavaScript 解释器,它将改变服务器应该如何工作的概念.它的目标是帮助程序员构建高度可伸缩的应用程序,编写能够处理数万条同时连接到一个(只有一个)物 ...
- CentOS7.3利用kubeadm安装kubernetes1.7.3完整版(官方文档填坑篇)
安装前记: 近来容器对企业来说已经不是什么陌生的概念,Kubernetes作为Google开源的容器运行平台,受到了大家的热捧.搭建一套完整的kubernetes平台,也成为试用这套平台必须迈过的坎儿 ...
随机推荐
- 随机深林和GBDT
随机森林(Random Forest): 随机森林是一个最近比较火的算法,它有很多的优点: 在数据集上表现良好 在当前的很多数据集上,相对其他算法有着很大的优势 它能够处理很高维度(feature很多 ...
- Writing a device driver for Windows
Writing a device driver for Windows In order to write a device driver for windows, one needs ...
- 安装mysql8.0.11以及修改root密码、连接navicat for mysql。
最近在学习node.js,少不得要跟数据库打交道,于是打算安装一个数据库软件,在mongedb和mysql之间选择了mysql.作为一个数据库新人不敢评论孰好孰坏,最后选择mysql纯属因为公司在用m ...
- [Windows Powershell]-学习笔记(1)
Powershell 快捷键 Powershell的快捷键和cmd,linux中的shell,都比较像. ALT+F7 清除命令的历史记录 PgUp PgDn 显示当前会话的第 ...
- Java设计原则—迪米特法则(转)
定义: 迪米特法则(Law of Demeter,LoD)也称为最少知识原则(Least Knowledge Principle,LKP). 一个对象应该对其他对象有最少的了解.通俗地讲,一个类应该对 ...
- SpringBoot入门学习(三)
基于第二讲,这一讲我们主要讲解包含以下内容 springBoot添加对freemarker的支持 使用@RestController处理ajax请求 使用@PathVariable注解获取url参数 ...
- centos升级vim
vim7爆出严重安全漏洞,升级到vim8,过程如下: yum remove vim -y yum install ncurses-devel -y 如果失败,提示unknown host apt.sw ...
- iOS开发之plist文件操作
之前在想用代码去实现很多界面上能用interface builder可以拖进去的功能,现在想想真是够无知的啊.不仅效率低下,而且对于代码的维护带来不少麻烦,这段时间一直在反思看了design+code ...
- Swoole学习(三)Swoole之UDP服务器的创建
环境:Centos6.4,PHP环境:PHP7 <?php //创建UCP服务器(UDP服务器相对于TCP服务器通信更可靠些) /** * $host 是swoole需要监听的ip,如果要监听本 ...
- js中比较实用的函数用法
<table id="table"> <tr> <th>用户ID</th> <th>用户名</th> < ...