【BZOJ 4361】 4361: isn (DP+树状数组+容斥)
4361: isn
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 218 Solved: 126Description
给出一个长度为n的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。Input
第一行一个整数n。接下来一行n个整数,描述A。Output
一行一个整数,描述答案。
Sample Input
4
1 7 5 3Sample Output
18HINT
1<=N<=2000Source
【分析】
考虑倒着想。
你倒数第一步做之前还不是非降,做完之后就非降了,说明如果有一个上升序列,你加倒数第一个点时候不是上升序列了,前面的操作就可以任意了。
本来想保证这个的,但是发现放入DP里还有一个关于长度的阶乘,根本不行。
然后考虑容斥。
现在的问题是:倒数第一个点x,放入序列里面还是非降的,这个时候不应该计算。
即操作结束在更之前。把这些不合法的减掉就好了。
g[i]表示长度为i的上升序列个数
那么贡献就是$g[i]*(n-i)!-g[i+1]*(i+1)*(n-i-1)!$
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2010
#define Mod 1000000007
// #define LL long long int f[Maxn][Maxn],g[Maxn],fac[Maxn],c[Maxn],a[Maxn]; struct node {int x,id;}t[Maxn];
bool cmp(node x,node y) {return x.x<y.x;} int mx;
void add(int x,int y)
{
for(int i=x;i<=mx;i+=i&(-i))
{
c[i]=(c[i]+y)%Mod;
}
} int get_sum(int x)
{
int ans=;
for(int i=x;i>=;i-=i&(-i))
ans=(ans+c[i])%Mod;
return ans;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
int x;scanf("%d",&x);
t[i].x=x;t[i].id=i;
}
sort(t+,t++n,cmp);
mx=;a[t[].id]=;
for(int i=;i<=n;i++)
{
if(t[i].x!=t[i-].x) mx++;
a[t[i].id]=mx;
}
for(int i=;i<=n;i++) f[][i]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++) c[j]=;
for(int j=;j<=n;j++)
{
f[i][j]=get_sum(a[j]);
add(a[j],f[i-][j]);
}
}
for(int i=;i<=n;i++) for(int j=;j<=n;j++) g[i]=(g[i]+f[i][j])%Mod;
fac[]=;for(int i=;i<=n;i++) fac[i]=1LL*fac[i-]*i%Mod;
int ans=;
ans=(ans+g[n]);
for(int i=;i<n;i++)
{
ans=(ans+1LL*g[i]*fac[n-i]%Mod-1LL*fac[n-i-]*g[i+]%Mod*(i+)%Mod)%Mod;
}
ans=(ans+Mod)%Mod;
printf("%d\n",ans);
return ;
}
2017-04-20 17:01:57
【BZOJ 4361】 4361: isn (DP+树状数组+容斥)的更多相关文章
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
随机推荐
- CSS3之伪元素选择器和伪类选择器
伪类选择器,和一般的DOM中的元素样式不一样,它并不改变任何DOM内容.只是插入了一些修饰类的元素,这些元素对于用户来说是可见的,但是对于DOM来说不可见.伪类的效果可以通过添加一个实际的类来达到. ...
- Shell编程——bash基础知识
# Bash中自动补全时忽略大小写 # 编辑~/.inputrc(没有的话,就新建一个),在最后加一行: set completion-ignore-case on # 若要用方向键Up,Down来搜 ...
- [linux]codeblocks开发mysql配置
1.在安装好mysql后,可以应该安装必要的库文件 $sudo apt-get install libmysqlclient-dev 2.将codeblocks与mysql的库文件连接起来 在code ...
- SDUT 3917
UMR 现在手里有 n 张康纳的表情,最上面一张是玛吉呀巴库乃.现在 UMR 如果每次把最上面的 m 张牌移到最下面而不改变他们的顺序及朝向,那么至少经过多少次移动玛吉呀巴库乃才会又出现在最上面呢? ...
- 24、CSS定位
CSS定位方法 driver.find_element_by_css_selector() 1.CSS定位常用策略(方式) 1.id选择器 说明:根据元素id属性来选择 格式:#id 如:#userA ...
- c语言学习笔记.预处理.#ifndef
#ifndef -> if not define 配合 #endif使用 在h头文件中使用,防止重复包含和编译. 也可以用条件编译来实现. 例如: 编写头文件 test.h 在头文件开头写上两行 ...
- Linux 下解决安装多个node冲突的问题(重新安装node)
一个系统中不经意安装了多个node版本,结果更新后还是原来的版本,下面思考一下解决办法: 敲黑板: 1. nodejs 用 包管理器安装一般在 /usr/local/bin 2. 查看当前目录下的no ...
- P-R曲线及与ROC曲线区别
一.P-R曲线 P-R曲线刻画查准率和查全率之间的关系,查准率指的是在所有预测为正例的数据中,真正例所占的比例,查全率是指预测为真正例的数据占所有正例数据的比例. 即:查准率P=TP/(TP + FP ...
- 远程工具(SSH Secure)连接Centos出现中文乱码问题的解决办法
问题原因 使用远程工具进行连接时,如果linux有中文文件或目录,显示时会出现乱码,原因是linux编码是UTF-8,而远程工具默认是当前系统本地编码即GBK.所以解决方案是统一两者编码就OK了,但是 ...
- Linux命令学习手册-route命令
route [-CFvnee] route [-v] [-A family] add [-net|-host] target [netmask Nm] [gw Gw] [metric N] [mss ...