=====================================================

http://blog.sina.com.cn/s/blog_6d0e97bb01015wol.html

=====================================================

稀疏表达是近年来SP, ML, PR, CV领域中的一大热点,文章可谓是普天盖地,令人目不暇给。老板某门课程的课程需要大纲,我顺道给扩展了下,就有了这个上中下三篇介绍性质的东西。遗憾的 是,我在绝大多数情况下实在不算是一个勤快的人,这玩意可能充满bug,更新也可能断断续续,尽请诸位看官见谅了。顺道一提,ICCV09有一个相关的 tutorial

据传博文里公式数量和其人气是成反比例关系的,一个公式可以驱散50%的读者,我写完这个(上)之后点了点公式数量,觉得大约是要无人问津了。所以,在介绍稀疏表达之前,让我们先来展示下其在computer vision中的应用,吸引下眼球。

首先是图像恢复(以前有人贴过Obama还记得不),由左侧图像恢复出右侧结果

然后是类似的图像inpainting

然后是图像去模糊,左上为输入模糊图像,右下为输出清晰图像及估计的相机运动(其实是PSF),中间均为迭代过程:

再然后是物体检测(自行车),左侧输入图像,中间为位置概率图,右侧为检测结果

当然我个人还推荐Yi Ma的sparse
face
,这个在对抗噪声的效果上很棒,比如下图中左侧的那张噪声图像(你能辨认是哪位不?这方法可以!)

且说sparse
representation这个概念,早在96-97年的时候就火了一把。最著名的大约要数Nature上的某篇文章,将稀疏性加入least
square的regularization,然后得到了具有方向特性图像块(basis)。这样就很好的解释了初级视皮层(V1)的工作机理,即对于线段的方向选择特性。几乎同一时期,著名的LASSO算法也被发表在
J. Royal. Statist. Soc B。Lasso比较好的解决了least square (l2 norm) error +
l1 norm regularization的问题。然而,这个时候绝大多数人没有意识到(或者没法解决)这l1
norm和稀疏性之间的联系。其实早在这之前,Osher等人提出的Total Variation (TV)已经包含了l1
norm的概念了,只不过TV原本是连续域上的积分形式。(啥?你不知道Osher…想想Level Set吧)

在进入现代的压缩感知、稀疏表示这一课题前,让我们来首先回顾下这一系列问题的核心,即线性方程组,其中矩阵,通常而言是满秩的。向量。现在已知,求解。学过线性代数的同学可能都会说:这个不难啊,因为,故而这个方程组是欠定的,所以有无穷多组解啊,咱还可以算算基础解系啥的…

但是如果我们希望其解尽可能的稀疏:比如(即中非零元个数)尽可能的小。那么问题就会变得比较微妙了,下图给出了问题的形象示意。


换言之给定m维空间中一组过完备的基,如何选择最少个数的基向量,重构给定向量,其严格定义可以写成

时光之轮播快到2003~2004年,Donoho &
Elad做了一个很漂亮的证明,如果矩阵满足某种条件,具体而言:

那么上文提及的0范数优化问题具有唯一的解。这里的是个比较诡异(请允许我使用这词)的定义:最小的线性相关的列向量集所含的向量个数,英文为spark(吐槽:明白了么,我做TA的时候就被这个问题问倒了)。本来想在这个概念上唠叨两句,后来发现了Elad的一个talk,清晰明了。

即便是唯一性得到了证明,求解这个问题仍然是NP难的。科研的车轮滚滚向前,转眼到了2006年,传奇性的华裔数学家Terrence
Tao登场了,Tao和Donoho的弟子Candes合作证明了在RIP条件下,0范数优化问题与以下1范数优化问题具有相同的解:


其中RIP条件,即存在满足某种条件的(与N相关)常数:


RIP条件是对于矩阵列向量正交性的一种衡量(此处咱就不细说了)。其实早在1993年Mallat就提出过Mutual
Coherence对于正交性进行度量,并提出了下文还要提及的matching pursuit方法。

实际上以上的1范数优化问题是一个凸优化,故而必然有唯一解,至此sparse
representation的大坑初步成型。总结一下:
1. 如果矩阵满足,则0范数优化问题有唯一解。
2. 进一步如果矩阵满足RIP条件,则0范数优化问题和1范数优化问题的解一致。

3. 1范数优化问题是凸优化,故其唯一解即为0范数优化问题的唯一解。

进一步可以考虑含噪声情况,即

可以得到相似的结果,有兴趣的同学可以查阅相关文献。理论坑只有大牛能挖,但一般人也能挖挖这个优化算法啊,于是SP、ML、CV邻域里都有做这个优化算法的,这个出招可就真是五花八门了。据我所知,大致可两大类:

第一类: 直接优化

一般的方法是greedy algorithm,代表有Matching Pursuit, Orthogonal Matching
Pursuit,这类方法循序的(sequentially)选择字典的原子(atoms),这类方法的过程一般包括求信号与字典中每一列(atom)的内积,还包括了一些最小二乘法的方法。

第二类,将0-norm替换为1-norm问题,使之变成一个凸优化问题,即优化

如果已知拉格朗日乘子,优化无约束凸优化问题

解这个的方法现在基本上soft thresholding的方法一统天下,常见的有coordinate descent, Bregman
Iteration (又是Osher),BP等
4. 如果未知拉格朗日乘子,优化

这类方法又叫Homotopy,可以认为是3的扩展。核心出发点是objective function是λ的分段线性函数。

除此之外,还有利用p范数逐次逼近0范数的方法等等,此处不再赘述。顺道说一句,稀疏表示在不同的领域连名称都不同,搞信号的管这个叫basis
pursuit,搞统计的叫L1
regularization….然后,让我们把话题拉回到Nature的那篇文章:如果我们不知道矩阵,只知道一堆向量。我们应当如何构造,使得在这一字典(矩阵)下的表示最稀疏?类比以上过程,这个问题被称为Dictionary
Learning,可以写成以下优化问题:

这个东西可就相对麻烦了,最关键的是这个优化不是凸的(优化变量相乘)。所以一般的想法是block
descent:首先固定,优化(相当于多个独立的1范数优化问题);其次将计算出的固定,优化,这就是一个(可能带约束)的least
square问题。如此反复,直到算法收敛到某个(局部)极小值。实际上解这个问题的方法目前有三种:efficient sparse
coding algorithm NIPS 06; K-SVD tsp 06; Online dictionary learning
for sparse coding, ICML 09 & JMLR
10。前两种都是batch的方法,后一种是online的,据个人测试最后一种的方法比前两者要快很多很多….下面这个是我利用ICML09的方法从1200张彩色图像中训练出一组过完备基,具有比较好的方向特性。

最后,还记得本文开头的那些demo么?INRIA做了一个sparse
representation的matlab工具包SPAMS,虽然不开源,但其效率(大部分时候)是现有公开工具包之冠(底层用了intel的MKL),利用这个工具包,几行简单的matlab代码就可以几乎实现以上提及的所有demo了….大家有兴趣的话,欢迎尝试^_^

{Reship}{Sparse Representation}稀疏表示的更多相关文章

  1. {Reship}{Sparse Representation}稀疏表示入门

    声明:本人属于绝对的新手,刚刚接触“稀疏表示”这个领域.之所以写下以下的若干个连载,是鼓励自己不要急功近利,而要步步为赢!所以下文肯定有所纰漏,敬请指出,我们共同进步! 踏入“稀疏表达”(Sparse ...

  2. [综] Sparse Representation 稀疏表示 压缩感知

    稀疏表示 分为 2个过程:1. 获得字典(训练优化字典:直接给出字典),其中字典学习又分为2个步骤:Sparse Coding和Dictionary Update:2. 用得到超完备字典后,对测试数据 ...

  3. 基于稀疏表示的图像超分辨率《Image Super-Resolution Via Sparse Representation》

    由于最近正在做图像超分辨重建方面的研究,有幸看到了杨建超老师和马毅老师等大牛于2010年发表的一篇关于图像超分辨率的经典论文<ImageSuper-Resolution Via Sparse R ...

  4. 稀疏表示 Sparse Representation

    稀疏表示_百度百科 https://baike.baidu.com/item/%E7%A8%80%E7%96%8F%E8%A1%A8%E7%A4%BA/16530498 信号稀疏表示是过去近20年来信 ...

  5. Image Super-Resolution via Sparse Representation——基于稀疏表示的超分辨率重建

    经典超分辨率重建论文,基于稀疏表示.下面首先介绍稀疏表示,然后介绍论文的基本思想和算法优化过程,最后使用python进行实验. 稀疏表示 稀疏表示是指,使用过完备字典中少量向量的线性组合来表示某个元素 ...

  6. Norm and Sparse Representation

    因为整理的时候用的是word, 所以就直接传pdf了. 1.关于范数和矩阵求导.pdf 参考的主要是网上的几个博文. 2.稀疏表示的简单整理.pdf 参考论文为: A Survey of Sparse ...

  7. cv论文(SPARSE REPRESENTATION相关)

    上个博文我讲了一些CNN相关的论文,比较浅显都是入门知识,这节课来总结一些稀疏表示方面的文章.至于上个博文说到的要讲的sparse coding的知识,我将会放在Deep Learning的专题里面讲 ...

  8. [UFLDL] *Sparse Representation

    Deep learning:二十九(Sparse coding练习) Deep learning:二十八(使用BP算法思想求解Sparse coding中矩阵范数导数) Deep learning:二 ...

  9. SQL Server ->> Sparse File(稀疏文件)

    Sparse File(稀疏文件)不是SQL Server的特性.它属于Windows的NTFS文件系统的一个特性.如果某个大文件中的数据包含着大量“0数据”(这个应该从二进制上看),这样的文件就可以 ...

随机推荐

  1. 百度编辑器(ueditor)@功能之获取坐标

    //获取百度编辑器的工具类 var domUtils = UE.dom.domUtils; //获取编辑器的坐标 var $ueditor_offset = $("#ueditor_0&qu ...

  2. 【三小时学会Kubernetes!(一) 】容器简介及为每个服务创建镜像

    容器是什么 Kubernetes 是容器管理平台.可想而知我们需要容器去管理它们.但是容器是什么?Docker 官方文档的最佳答案如下: 容器映像是轻量级的.独立的.可执行软件包,包含所有可运行的东西 ...

  3. [spring]Bean注入——在XML中配置

    Bean注入的方式有两种: 一.在XML中配置 属性注入 构造函数注入 工厂方法注入 二.使用注解的方式注入@Autowired,@Resource,@Required 本文首先讲解在XML中配置的注 ...

  4. mvc 获取 HtmlHelper 表达式值

    public static MvcHtmlString Try<TModel, TProperty>( this HtmlHelper<TModel> htmlHelper, ...

  5. Srping整合EhCache

    引入的Jar包如下:

  6. CodeForces 297C Splitting the Uniqueness (脑补构造题)

    题意 Split a unique array into two almost unique arrays. unique arrays指数组各个数均不相同,almost unique arrays指 ...

  7. 由浅入深了解EventBus:(五)

    事件分发 EventBus3.0的事件的分发时通过EventBus类中的post(粘性事件为postSticky)方法,post与postSticky的唯一区别就是,在postSticky内部首先会向 ...

  8. 【fzu-2261】浪里个浪

    TonyY是一个喜欢到处浪的男人,他的梦想是带着兰兰姐姐浪遍天朝的各个角落,不过在此之前,他需要做好规划. 现在他的手上有一份天朝地图,上面有n个城市,m条交通路径,每条交通路径都是单行道.他已经预先 ...

  9. yii2 实现excel导出功能

    官方教程地址:http://www.yiiframework.com/extension/yii2-export2excel/ 安装: Either run php composer.phar req ...

  10. 【LeetCode 228_数组】Summary Ranges

    vector<string> summaryRanges(vector<int>& nums) { int nums_len = nums.size(); vector ...