Division

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 5053    Accepted Submission(s): 1980

Problem Description
Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that

and the total cost of each subset is minimal.

 
Input
The input contains multiple test cases.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

 
Output
For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

 
Sample Input
2
3 2
1 2 4
4 2
4 7 10 1
 
Sample Output
Case 1: 1
Case 2: 18

Hint

The answer will fit into a 32-bit signed integer.

 
Source
题意:给你一个容量为n的集合 现在选取 m个子集 并且要求m个子集的并集为原集合  每个集合的代价为集合内(MAX – MIN)^2 求最少的代价
题解:
 #pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
#include <complex>
#define ll __int64
#define mod 1000000007
using namespace std;
int t;
int n,m;
int a[];
int dp[][];
int q[],head,tail;
int main()
{
scanf("%d",&t);
for(int s=; s<=t; s++)
{
scanf("%d %d",&n,&m);
for(int j=; j<=n; j++)
scanf("%d",&a[j]);
sort(a+,a++n);
for(int j=; j<=n; j++)
dp[][j]=(a[j]-a[])*(a[j]-a[]);
for(int i=; i<=m; i++)
{
head=tail=;
q[tail++]=i-;
for(int j=i; j<=n; j++)
{
while(head+<tail)
{
int p1=q[head],p2=q[head+];
int x1=a[p1+],x2=a[p2+];
int y1=dp[i-][p1]+x1*x1,y2=dp[i-][p2]+x2*x2;
if(y2-y1<*a[j]*(x2-x1))
head++;
else
break;
}
int k=q[head];
dp[i][j]=dp[i-][k]+(a[j]-a[k+])*(a[j]-a[k+]);
while(head+<tail&&j!=n)
{
int p1=q[tail-],p2=q[tail-],p3=j;
int x1=a[p1+],x2=a[p2+],x3=a[p3+];
int y1=dp[i-][p1]+x1*x1,y2=dp[i-][p2]+x2*x2,y3=dp[i-][p3]+x3*x3;
if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))
tail--;
else
break;
}
q[tail++]=j;
}
}
printf("Case %d: %d\n",s,dp[m][n]);
}
return ;
}

HDU 3480 斜率dp的更多相关文章

  1. B - Lawrence HDU - 2829 斜率dp dp转移方程不好写

    B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...

  2. hdu 3507 斜率dp

    不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...

  3. D - Pearls HDU - 1300 斜率dp+二分

    D - Pearls HDU - 1300 这个题目也是一个比较裸的斜率dp,依照之前可以推一下这个公式,这个很好推 这个注意题目已经按照价格升序排列序,所以还是前缀和还是单调的. sum[i] 表示 ...

  4. hdu 2829 斜率DP

    思路:dp[i][x]=dp[j][x-1]+val[i]-val[j]-sum[j]*sum[i]+sum[j]*sum[j]; 其中val[i]表示1~~i是一段的权值. 然后就是普通斜率dp做法 ...

  5. HDU 3480 Division DP斜率优化

    解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...

  6. hdu 2993 斜率dp

    思路:直接通过斜率优化进行求解. #include<iostream> #include<cstdio> #include<algorithm> #include& ...

  7. hdu 4258 斜率DP

    思路:dp[i]=dp[j]+(num[i]-num[j+1])^2; #include<iostream> #include<cstring> #include<alg ...

  8. hdu 3480 Division(斜率优化DP)

    题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...

  9. HDU 3480 - Division - [斜率DP]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

随机推荐

  1. Python 3 利用 Dlib 实现摄像头人脸检测特征点标定

    0. 引言 利用 Python 开发,借助 Dlib 库捕获摄像头中的人脸,进行实时人脸 68 个特征点标定: 支持多张人脸: 有截图功能: 图 1 工程效果示例( gif ) 图 2 工程效果示例( ...

  2. 技本功丨请带上纸笔刷着看:解读MySQL执行计划的type列和extra列

    本萌最近被一则新闻深受鼓舞,西工大硬核“女学神”白雨桐,获6所世界顶级大学博士录取 货真价值的才貌双全,别人家的孩子 高考失利与心仪的专业失之交臂,选择了软件工程这门自己完全不懂的专业.即便全部归零, ...

  3. #Ubuntu 18.04 安装tensorflow-gpu 1.9

    参考 https://tensorflow.google.cn/install/install_linux http://nvidia.com/cuda http://developer.nvidia ...

  4. JavaScript 之 ajax

    1. AJAX 的概念 AJAX,即 Asynchronous JavaScript and XML(异步的 JavaScript 和 XML) 同步:前面的代码不执行完毕,后面的代码无法执行 异步: ...

  5. 常用DOS指令备忘

    1.删除整个目录,包括空目录 rd D:\管理\2012新同学练习\.svn /s/q /s 删除当前目录及子目录 /q 不询问直接删除 2.拷贝目录树 xcopy D:\管理\2012新同学练习 E ...

  6. python sys模块使用详情

    python常用模块目录 sys模块提供了一系列有关Python运行环境的变量和函数.1.sys.argv可以用sys.argv获取当前正在执行的命令行参数的参数列表(list).变量解释sys.ar ...

  7. Tempter of the Bone HDU 1010(DFS+剪枝)

    Problem Description The doggie found a bone in an ancient maze, which fascinated him a lot. However, ...

  8. Segments CodeForces 909B (找规律)

    Description You are given an integer N. Consider all possible segments (线段,划分)on the coordinate axis ...

  9. AOP:spring 的Annotation配置

    1.文件目录: 2.实体类 package com.wangcf.po; public class User { private int id; private String name; privat ...

  10. AVAudioPlayer播放音乐

    1:首先创建一个新的项目,继承自UIViewController 2:导入框架AVFoundation.framework 右键工程名,在Build Phases的Link Binary With L ...