HDU 3480 斜率dp
Division
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 999999/400000 K (Java/Others)
Total Submission(s): 5053 Accepted Submission(s): 1980
Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that

and the total cost of each subset is minimal.
In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given.
For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.
The answer will fit into a 32-bit signed integer.
#pragma comment(linker, "/STACK:102400000,102400000")
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
#include <map>
#include <set>
#include <queue>
#include <bitset>
#include <string>
#include <complex>
#define ll __int64
#define mod 1000000007
using namespace std;
int t;
int n,m;
int a[];
int dp[][];
int q[],head,tail;
int main()
{
scanf("%d",&t);
for(int s=; s<=t; s++)
{
scanf("%d %d",&n,&m);
for(int j=; j<=n; j++)
scanf("%d",&a[j]);
sort(a+,a++n);
for(int j=; j<=n; j++)
dp[][j]=(a[j]-a[])*(a[j]-a[]);
for(int i=; i<=m; i++)
{
head=tail=;
q[tail++]=i-;
for(int j=i; j<=n; j++)
{
while(head+<tail)
{
int p1=q[head],p2=q[head+];
int x1=a[p1+],x2=a[p2+];
int y1=dp[i-][p1]+x1*x1,y2=dp[i-][p2]+x2*x2;
if(y2-y1<*a[j]*(x2-x1))
head++;
else
break;
}
int k=q[head];
dp[i][j]=dp[i-][k]+(a[j]-a[k+])*(a[j]-a[k+]);
while(head+<tail&&j!=n)
{
int p1=q[tail-],p2=q[tail-],p3=j;
int x1=a[p1+],x2=a[p2+],x3=a[p3+];
int y1=dp[i-][p1]+x1*x1,y2=dp[i-][p2]+x2*x2,y3=dp[i-][p3]+x3*x3;
if((y3-y2)*(x2-x1)<=(y2-y1)*(x3-x2))
tail--;
else
break;
}
q[tail++]=j;
}
}
printf("Case %d: %d\n",s,dp[m][n]);
}
return ;
}
HDU 3480 斜率dp的更多相关文章
- B - Lawrence HDU - 2829 斜率dp dp转移方程不好写
B - Lawrence HDU - 2829 这个题目我觉得很难,难在这个dp方程不会写. 看了网上的题解,看了很久才理解这个dp转移方程 dp[i][j] 表示前面1~j 位并且以 j 结尾分成了 ...
- hdu 3507 斜率dp
不好理解,先多做几个再看 此题是很基础的斜率DP的入门题. 题意很清楚,就是输出序列a[n],每连续输出的费用是连续输出的数字和的平方加上常数M 让我们求这个费用的最小值. 设dp[i]表示输出前i个 ...
- D - Pearls HDU - 1300 斜率dp+二分
D - Pearls HDU - 1300 这个题目也是一个比较裸的斜率dp,依照之前可以推一下这个公式,这个很好推 这个注意题目已经按照价格升序排列序,所以还是前缀和还是单调的. sum[i] 表示 ...
- hdu 2829 斜率DP
思路:dp[i][x]=dp[j][x-1]+val[i]-val[j]-sum[j]*sum[i]+sum[j]*sum[j]; 其中val[i]表示1~~i是一段的权值. 然后就是普通斜率dp做法 ...
- HDU 3480 Division DP斜率优化
解题思路 第一步显然是将原数组排序嘛--然后分成一些不相交的子集,这样显然最小.重点是怎么分. 首先,我们写出一个最暴力的\(DP\): 我们令$F[ i ][ j ] $ 为到第\(i\)位,分成\ ...
- hdu 2993 斜率dp
思路:直接通过斜率优化进行求解. #include<iostream> #include<cstdio> #include<algorithm> #include& ...
- hdu 4258 斜率DP
思路:dp[i]=dp[j]+(num[i]-num[j+1])^2; #include<iostream> #include<cstring> #include<alg ...
- hdu 3480 Division(斜率优化DP)
题目链接:hdu 3480 Division 题意: 给你一个有n个数的集合S,现在让你选出m个子集合,使这m个子集合并起来为S,并且每个集合的(max-min)2 之和要最小. 题解: 运用贪心的思 ...
- HDU 3480 - Division - [斜率DP]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3480 Time Limit: 10000/5000 MS (Java/Others) Memory L ...
随机推荐
- ASCII码中的可见字符
ASCII码中 包括空格的可见字符从32到126共95个 不包括则为94
- 数据库MySql在python中的使用
随着需要存储数据的结构不断复杂化,使用数据库来存储数据是一个必须面临的问题.那么应该如何在python中使用数据库?下面就在本篇博客中介绍一下在python中使用mysql. 首先,本博客已经假定阅读 ...
- Yii2 UploadedFile上传文件
通过 UploadFile::getInstance($model, $attribute); UploadFile::getInstances($model, $attribute); Upload ...
- MySql 8 命令
1-创建用户 create user 用户名@'%' identified by '密码'; create user 用户名@'localhost' identified by '密码'; 2-授 ...
- DB2定位锁等待
在应用中,我们经常会碰到sql执行很慢,但是数据库cpu和内存使用率又不高的情况,类似的问题基本上由于锁,排序等原因造成,本文主要描述如何去定位锁等待问题,谁在锁等待?等待谁持有的锁?锁在那个表? 一 ...
- 把a文件删除b文件中的相同的行
grep -vxFf b.txt a.txt > newa.txt 更好的方法是 comm - - b.txt a.txt > newa.txt 来自Tool in unix to sub ...
- 微信小程序 跳坑
http://www.wxapp-union.com/forum.php?mod=viewthread&tid=3270
- Halcon 笔记3 形态学
Halcon 三大数据类型: (1)图像 (2)区域 (3)XLD 查看时间工具 如果想让图像减少,则进行腐蚀(或者使用开运算),反之,则进行膨胀(或闭运算) 腐蚀后再进行膨胀,相当于进行开运算.因 ...
- PHP简单模拟登录功能实例分享
1.curl实现模拟登录的代码,(只是实现服务器与服务器建立会话,其实并没有在客户端与服务器之间建立会话) <?php $cookie_jar = tempnam('./tmp','cookie ...
- linux自启动、定时启动脚本
linux开机自启动 想让一个程序.脚本开机自启动,可以在/etc/rc.d目录下面找到rc.local文件,编辑该文件,在尾部加上需要运行的命令即可. 如: #cd /etc/rc.d #sudo ...