BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】
Description
方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美。
这排玉米一共有N株,它们的高度参差不齐。
方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感的玉米拔除掉,使得剩下的玉米的高度构成一个单调不下降序列。
方伯伯可以选择一个区间,把这个区间的玉米全部拔高1单位高度,他可以进行最多K次这样的操作。拔玉米则可以随意选择一个集合的玉米拔掉。
问能最多剩多少株玉米,来构成一排美丽的玉米。
Input
第1行包含2个整数n,K,分别表示这排玉米的数目以及最多可进行多少次操作。
第2行包含n个整数,第i个数表示这排玉米,从左到右第i株玉米的高度ai。
Output
输出1个整数,最多剩下的玉米数。
Sample Input
3 1
2 1 3
Sample Output
3
HINT
1 < N < 10000,1 < K ≤ 500,1 ≤ ai ≤5000
思路
首先发现一个性质:因为要保证单调不降,所以右端点取n是最优的
然后就可以用\(dp_{i,j}\)表示修改后值是i的数加了j次
这个状态比较神奇
可以发现是可以从任何\(k \le i, p \le j\)的\(dp_{k,p}\)转移过来的
然后就二维树状数组优化了
//Author: dream_maker
#include<bits/stdc++.h>
using namespace std;
//----------------------------------------------
//typename
typedef long long ll;
//convenient for
#define fu(a, b, c) for (int a = b; a <= c; ++a)
#define fd(a, b, c) for (int a = b; a >= c; --a)
#define fv(a, b) for (int a = 0; a < (signed)b.size(); ++a)
//inf of different typename
const int INF_of_int = 1e9;
const ll INF_of_ll = 1e18;
//fast read and write
template <typename T>
void Read(T &x) {
bool w = 1;x = 0;
char c = getchar();
while (!isdigit(c) && c != '-') c = getchar();
if (c == '-') w = 0, c = getchar();
while (isdigit(c)) {
x = (x<<1) + (x<<3) + c -'0';
c = getchar();
}
if (!w) x = -x;
}
template <typename T>
void Write(T x) {
if (x < 0) {
putchar('-');
x = -x;
}
if (x > 9) Write(x / 10);
putchar(x % 10 + '0');
}
//----------------------------------------------
const int N = 1e4 + 10;
const int K = 5e2 + 10;
#define lowbit(p) (p & (-p))
int t[N + K][K];
int n, k, a[N];
int query(int x, int y) {
int res = 0;
int nx = x;
while (nx) {
int ny = y;
while (ny) {
res = max(res, t[nx][ny]);
ny -= lowbit(ny);
}
nx -= lowbit(nx);
}
return res;
}
void update(int x, int y, int vl) {
int nx = x;
while (nx < N + K) {
int ny = y;
while (ny < K) {
t[nx][ny] = max(t[nx][ny], vl);
ny += lowbit(ny);
}
nx += lowbit(nx);
}
}
int main() {
Read(n), Read(k); ++k;
fu(i, 1, n) Read(a[i]);
int ans = 0;
fu(i, 1, n) {
fd(j, k, 1) {
int dp = query(a[i] + j, j) + 1;
ans = max(ans, dp);
update(a[i] + j, j, dp);
}
}
Write(ans);
return 0;
}
BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】的更多相关文章
- [BZOJ3594] [Scoi2014]方伯伯的玉米田 二维树状数组优化dp
我们发现任何最优解都可以是所有拔高的右端点是n,然后如果我们确定了一段序列前缀的结尾和在此之前用过的拔高我们就可以直接取最大值了然后我们在这上面转移就可以了,然后最优解用二维树状数组维护就行了 #in ...
- BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)
分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...
- [Scoi2014]方伯伯的玉米田 二维树状数组+动态规划
考试最后半个小时才做这道题.十分钟写了个暴力还写挂了..最后默默输出n.菜鸡一只. 这道题比较好看出来是动规.首先我们要明确一点.因为能拔高长度任意的一段区域,所以如果从i开始拔高,那么一直拔高到n比 ...
- BZOJ3594 SCOI2014方伯伯的玉米田(动态规划+树状数组)
可以发现每次都对后缀+1是不会劣的.考虑dp:设f[i][j]为前i个数一共+1了j次时包含第i个数的LIS长度.则f[i][j]=max(f[i][j-1],f[k][l]+1) (k<i,l ...
- BZOJ3594 [Scoi2014]方伯伯的玉米田 【树状数组优化dp】
题目链接 BZOJ3594 题解 dp难题总是想不出来,, 首先要观察到一个很重要的性质,就是每次拔高一定是拔一段后缀 因为如果单独只拔前段的话,后面与前面的高度差距大了,不优反劣 然后很显然可以设出 ...
- bzoj3594: [Scoi2014]方伯伯的玉米田
dp新优化姿势... 首先,当我们拔高时,一定右端点是n最优.因为如果右端点是r,相当于降低了r之后玉米的高度.显然n更优. 那么可以dp.dp[i][j]表示前i个拔高j次的LIS.dp[i][j] ...
- bzoj3594: [Scoi2014]方伯伯的玉米田--树状数组优化DP
题目大意:对于一个序列,可以k次选任意一个区间权值+1,求最长不下降子序列最长能为多少 其实我根本没想到可以用DP做 f[i][j]表示前i棵,操作j次,最长子序列长度 p[x][y]表示操作x次后, ...
- 2019.03.28 bzoj3594: [Scoi2014]方伯伯的玉米田(二维bit优化dp)
传送门 题意咕咕咕 思路:直接上二维bitbitbit优化dpdpdp即可. 代码: #include<bits/stdc++.h> #define N 10005 #define K 5 ...
- SCOI2014 bzoj3594 方伯伯的玉米田(二维树状数组+dp)
3594: [Scoi2014]方伯伯的玉米田 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1971 Solved: 961[Submit][St ...
随机推荐
- sa learning
后缀数组之前一直在给队友搞,但是这个类太大了,预感到青岛八成会有,于是自己也学习一下,记录一下做题的历程 所用的模板暂时来自于队友的倍增nlogn da算法 int t1[maxn] , t2[max ...
- 经典C#面试题
1.在下面的代码中,如何引用命名空间fabulous中的great? namespace fabulous{// code in fabulous namespace}namespace super{ ...
- canvas实现鼠标拖拽矩形移动改变大小
项目的一个新需求,动态生成矩形框,鼠标点击拖动改变矩形框的位置,并可以调整大小. 之前做过一个小demo,需求类似,但是在canvas内只有一个矩形框,拖动移动,当时记得是用isPointInPath ...
- iOS学习-字符串的删除替换
字符串的常用处理,删除,替换.记录一下,方便查找. -------------------------------------------------------------------------- ...
- Flash访问模块FDS用法及常见问题—nRF5 SDK模块系列一
FDS,全称Flash Data Storage,用来访问芯片内部Flash的.当你需要把数据存储在Flash中,或者读取Flash中的用户数据,或者更新或者删除Flash中的数据,那么FDS模块是你 ...
- LeetCode第[88]题(Java):Merge Sorted Array(合并已排序数组)
题目:合并已排序数组 难度:Easy 题目内容: Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as ...
- Nginx、Apache工作原理及Nginx为何比Apache高效
Nginx才短短几年,就拿下了web服务器大笔江山,众所周知,Nginx在处理大并发静态请求方面,效率明显高于httpd,甚至能轻松解决C10K问题. 在高并发连接的情况下,Nginx是Apache服 ...
- 重新学习MySQL数据库2:『浅入浅出』MySQL 和 InnoDB
重新学习Mysql数据库2:『浅入浅出』MySQL 和 InnoDB 作为一名开发人员,在日常的工作中会难以避免地接触到数据库,无论是基于文件的 sqlite 还是工程上使用非常广泛的 MySQL.P ...
- 在接口请求时报错Unrecognized field "zZF1"
这个问题是json序列化问题,当参数中出现大写字母组成的字段时(例如:ZZF1),此时需在字段上加入注解:@JsonProperty(value = "ZZF1")
- IOS-每个程序员的编程之路上都应该看这11本书
国外知名网站stackoverflow上有一个问题调查: 哪本书是对程序员最有影响.每个程序员都该阅读的书?,这个调查已历时两年,目前为止吸引了153,432人访问,读者共推荐出了478本书(还在增加 ...