这道题拖了好久因为懒,结果1A了,惊讶∑( 口 ||

【题目大意】

给定一张n个顶点m条边的有权无向图。现要修改各边边权,使得给出n-1条边是这张图的最小生成树,代价为变化量的绝对值。求最小代价之和。

【思路】

思路有点神,并不是我这种蒟蒻能够想到的XD

显然由贪心,树边必定变成wi-di,非树边必定变成wi+di (di≥0)

为了满足Mst的性质,考察一条非树边j,它加最小生成树后,必定构成一个环。对于环上的每一条树边i,有wi-di≤wj+dj,即di+dj≥wi-wj。这非常类似于KM的形式x[i]+y[i]≥wt[i][j]。

那么我们就如下操作:对于最小生成树,先预处理出所有节点的深度。对于一条非树边E(u,v),求出lca(u,v)。对于u->lca,lca->v上的每一条树边,由树边向非树边连一条(w树边-w非树边)的边。然后跑KM。

注意这个值可能小于0,由于变化量的绝对值之和必定大于0,我们就取为0即可。

【错误点】

lca和KM都写挂了一发orz

LCA的时候忘记了swim后,若u==v,返回u。

KM取slack的时候是取min的。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
using namespace std;
const int MAXN=;
const int MAXM=+;
const int INF=0x7fffffff;
struct Edge
{
int u,v,w,t;
}edge[MAXM];
vector<int> E[MAXN];
int val[MAXM][MAXM];
int dep[MAXN],anc[MAXN][],faedge[MAXN];
int cnt,m,n; /**build tree**/
void addedge(int u,int v,int w)
{
edge[++cnt]=(Edge){u,v,w,};
E[u].push_back(cnt);
E[v].push_back(cnt);
} void dfs(int rt,int fa,int id)
{
dep[rt]=dep[fa]+;
anc[rt][]=fa;
faedge[rt]=id;
for (int i=;i<E[rt].size();i++)
{
int now=E[rt][i];
if (edge[now].t && edge[now].u!=fa && edge[now].v!=fa)
{
if (edge[now].u==rt) dfs(edge[now].v,rt,now);
else dfs(edge[now].u,rt,now);
}
}
} /*lca*/
int getanc()
{
for (int i=;i<;i++)
for (int j=;j<=n;j++)
anc[j][i]=anc[anc[j][i-]][i-];
} int swim(int u,int H)
{
int i=;
while (H>)
{
if (H&) u=u[anc][i];
H>>=;
i++;
}
return u;
} int LCA(int u,int v)
{
if (dep[u]<dep[v]) swap(u,v);
if (dep[u]!=dep[v]) u=swim(u,dep[u]-dep[v]);
if (u==v) return u;//不要忘了这句语句
for (int i=;i>=;i--)
{
if (anc[u][i]!=anc[v][i])
{
u=anc[u][i];
v=anc[v][i];
}
}
return anc[u][];
} /*KM*/ void Addedge(int u,int v,int w)
{
val[u][v]=max(w,);//由于两条边的变化量的绝对值之和不可能为负数,则必定设为0 ☆☆☆☆☆☆
} void build(int a,int b,int id)
{
if (dep[a]<dep[b]) swap(a,b);
while (a!=b)
{
Addedge(faedge[a],id,edge[faedge[a]].w-edge[id].w);
a=anc[a][];
}
} int fx[MAXM],fy[MAXM],visx[MAXM],visy[MAXM],slack[MAXM],lk[MAXM]; int Hungary_dfs(int u)
{
visx[u]=;
for (int i=;i<=m;i++)
{
int wt=fx[u]+fy[i]-val[u][i];
if (!visy[i] && wt==)
{
visy[i]=;
if (lk[i]==- || Hungary_dfs(lk[i]))
{
lk[i]=u;
return ;
}
}
else slack[i]=min(slack[i],wt);//注意这里是取较小值不是较大
}
return ;
} void KM()
{
memset(lk,-,sizeof(lk));
for (int i=;i<=m;i++)
{
fx[i]=-INF;
fy[i]=;
for (int j=;j<=m;j++) fx[i]=max(fx[i],val[i][j]);
}
for (int i=;i<=m;i++)
{
memset(visx,,sizeof(visx));
memset(visy,,sizeof(visy));
memset(slack,0x3f,sizeof(slack));
while (!Hungary_dfs(i))
{
int delta=INF;
for (int j=;j<=m;j++)
if (!visy[j]) delta=min(delta,slack[j]);
for (int j=;j<=m;j++)
{
if (visx[j])
{
fx[j]-=delta;
visx[j]=;
}
if (visy[j])
{
fy[j]+=delta;
visy[j]=;
}
}
}
}
int ans=;
for (int i=;i<=m;i++) ans+=(fx[i]+fy[i]);
printf("%d",ans);
} /**main part**/
void init()
{
cnt=;
scanf("%d%d",&n,&m);
for (int i=;i<=m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
} for (int i=;i<=(n-);i++)
{
int x,y;
scanf("%d%d",&x,&y);
for (int j=;j<E[x].size();j++)
{
int id=E[x][j];
if ((edge[id].u==x && edge[id].v==y)||(edge[id].v==x && edge[id].u==y))
{
edge[id].t=;
break;
}
}
}
dfs(,,);//建立以1为根的树,方便后续lca操作。注意仅有树边加入,非树边不加入
} void solve()
{
memset(val,,sizeof(val));
getanc();
for (int i=;i<=m;i++)
{
if (!edge[i].t)
{
int lca=LCA(edge[i].u,edge[i].v);
build(edge[i].u,lca,i);
build(edge[i].v,lca,i);
}
}
KM();
} int main()
{
init();
solve();
return ;
}

【KM】BZOJ1937 [Shoi2004]Mst 最小生成树的更多相关文章

  1. [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)

    1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec  Memory Limit: 64 MBSubmit: 802  Solved: 344[Submit][Sta ...

  2. BZOJ1937 [Shoi2004]Mst 最小生成树

    首先由贪心的想法知道,树边只减不加,非树边只加不减,令$w_i$表示i号边原来的边权,$d_i$表示i号边的改变量 对于一条非树边$j$连接着两个点$x$.$y$,则对于$xy$这条路径上的所有树边$ ...

  3. 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)

    [BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...

  4. 【bzoj1937】 Shoi2004—Mst 最小生成树

    http://www.lydsy.com/JudgeOnline/problem.php?id=1937 (题目链接) 题意 一个无向图,给出一个生成树,可以修改每条边的权值,问最小修改多少权值使得给 ...

  5. BZOJ 1937: [Shoi2004]Mst 最小生成树 [二分图最大权匹配]

    传送门 题意: 给一张无向图和一棵生成树,改变一些边的权值使生成树为最小生成树,代价为改变权值和的绝对值,求最小代价 线性规划的形式: $Min\quad \sum\limits_{i=1}^{m} ...

  6. [BZOJ 1937][Shoi2004]Mst 最小生成树

    传送门 $ \color{red} {solution:} $ 对于每条树边\(i\),其边权只可能变小,对于非树边\(j\),其边权只可能变大,所以对于任意非树边覆盖的树边有 \(wi - di & ...

  7. MST最小生成树

    首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...

  8. [poj1679]The Unique MST(最小生成树)

    The Unique MST Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28207   Accepted: 10073 ...

  9. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

随机推荐

  1. koa源码阅读[0]

    koa源码阅读[0] Node.js也是写了两三年的时间了,刚开始学习Node的时候,hello world就是创建一个HttpServer,后来在工作中也是经历过Express.Koa1.x.Koa ...

  2. css_input[checked]复选框去掉默认样式并添加新样式

    效果对比: “\2713”实体符号√ :如有兴趣查看详细实体符号请点这里 代码实现: <!DOCTYPE html> <html> <head> <meta ...

  3. 导航狗IT周报第十五期(July 8, 2018)

    摘要:Seclists.Org: 微信支付SDK存在XXE漏洞:WordPress 4.9.6存在文件删除漏洞:linux中常用的文件打包/解包与压缩/解压缩命令总结… 安全播报 Seclists.O ...

  4. frameset测试

    frame不能放在body标签内.指定name属性,为这一个框架指定名字,在html的a的target属性可以设为target="right"在该框架显示跳转的页面.(常用于后台管 ...

  5. 面试中关于Redis的问题看这篇就够了

    昨天写了一篇自己搭建redis集群并在自己项目中使用的文章,今天早上看别人写的面经发现redis在面试中还是比较常问的(笔主主Java方向).所以查阅官方文档以及他人造好的轮子,总结了一些redis面 ...

  6. wget下载整个网站或特定目录

    下载整个网站或特定目录 wget -c -k -r -np -p http://www.yoursite.com/path -c, –continue 断点下载 -k, –convert-links ...

  7. Maven整合Spring与Solr

    首先,在maven的pom.xml文件中配置对spring和solrj客户端的依赖: <project xmlns="http://maven.apache.org/POM/4.0.0 ...

  8. Metro应用Json数据处理

    Windows Phone 8 或者 Windows 8 平台对JSON数据的处理方式基本是一致的,需要使用DataContractJsonSerializer类将对象的实例序列化为JSON字符串,并 ...

  9. 苹果receipt样例

    使用[[NSBundle mainBundle] appStoreReceiptURL]方式获取receipt (iOS7及以上获取receipt的方法) 普通付费 "latest_rece ...

  10. leetcode 之Remove Duplicates from Sorted Array(1)

    删除数组中的重复元素并返回新数组的个数 思路:保留不同的元素即可. int removeDeplicates(int A[], int n) { ; ; i < n; i++) { if (A[ ...