【并查集】【枚举倍数】UVALive - 7638 - Number of Connected Components
题意:n个点,每个点有一个点权。两个点之间有边相连的充要条件是它们的点权不互素,问你这张图的连通块数。
从小到大枚举每个素数,然后枚举每个素数的倍数,只要这个素数的某个倍数存在,就用并查集在这些倍数之间都连上边。然后输出最后的集合数量即可。
注意,点权为1的点都会自成一个连通块。
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int T,a[1000006],fa[1000006],f[1000006],p[1000006],ans,n,t,notPrime[1000006],prime[1000006],num;
int get(int x){return fa[x]==x?x:fa[x]=get(fa[x]);}
void un(int x,int y)
{
int Y=get(y);int X=get(x);
if(X!=Y)
{
fa[X]=Y;
}
}
char ch;
int temp;
int read()
{
while(ch=getchar(),ch<'0'||ch>'9');
temp=ch-'0';
while(ch=getchar(),ch<='9'&&ch>='0')
temp=temp*10+ch-'0';
return temp;
}
int main()
{
// freopen("1.in","r",stdin);
// freopen("1.out","w",stdout);
for(int i=2;i<=1000000;++i)
{
if(!notPrime[i])
{
prime[++num]=i;
}
for(int j=1;j<=num&&prime[j]*i<=1000000;++j)
{
notPrime[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
scanf("%d",&T);
int maxi=1000000;
for(int tt=1;tt<=T;++tt)
{
n=read();
for(int i=1;i<=maxi;++i)
{
fa[i]=i;
f[i]=0;
a[i]=0;
}
maxi=0;
ans=0;
for(int i=1;i<=n;++i)
{
t=read();
if(t==1) ans++;
maxi=max(maxi,t);
a[t]=1;
}
for(int i=1;i<=num;++i)
{
int now=prime[i];
int tail=0;
for(int j=1;now*j<=maxi;++j)
{
if(a[now*j])
p[++tail]=now*j;
}
for(int j=1;j<tail;++j)
{
un(p[j],p[j+1]);
}
}
for(int i=2;i<=maxi;++i)
if(a[i])
{
if(!f[get(i)]) ans++;
f[get(i)]=1;
}
printf("Case %d: %d\n",tt,ans);
} }
【并查集】【枚举倍数】UVALive - 7638 - Number of Connected Components的更多相关文章
- uva live 7638 Number of Connected Components (并查集)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
- Number of Connected Components in an Undirected Graph -- LeetCode
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- 【LeetCode】323. Number of Connected Components in an Undirected Graph 解题报告 (C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetcod ...
- [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
- [Locked] Number of Connected Components in an Undirected Graph
Number of Connected Components in an Undirected Graph Given n nodes labeled from 0 to n - 1 and a li ...
- [Swift]LeetCode323. 无向图中的连通区域的个数 $ Number of Connected Components in an Undirected Graph
Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...
- LeetCode 323. Number of Connected Components in an Undirected Graph
原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...
随机推荐
- SQL Server 高级SQL
查询view 的列和列数据类型 SELECT COLUMN_NAME, DATA_TYPE FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'vi ...
- jquery 中$符号六大作用
jquery 中$符号六大作用 2012-12-16 86市场网 javascript a.$用作选择器, var e = $("h1 a"); var f = $("t ...
- python学习笔记(十三)之lambda表达式
lambda表达式: 用法 lambda x : 2 * x + 1 其中:前面是参数,后面是返回值. >>> def ds(x): ... return 2 * x + 1 ... ...
- [HDU1205]吃糖果 题解(鸽巢原理)
[HDU1205]吃糖果 Description -HOHO,终于从Speakless手上赢走了所有的糖果,是Gardon吃糖果时有个特殊的癖好,就是不喜欢将一样的糖果放在一起吃,喜欢先吃一种,下一次 ...
- thinkphp搜索排序
- sqlmap的使用方法 ——时光凉春衫薄
普通注入 Sqlmap -u “http://www.xxxxxx.com/xxxx/xxx/xxx.xxx?xx=xx” --dbs 找到一个sql的注入点 探测他的库名 access的直接探表 ...
- ubuntu12.04 svn ssl错误
1,ubuntu12.04 svn ssl错误提示: OPTIONS of '<url>': SSL handshake failed: SSL error: Key usage viol ...
- webuploader插件使用分析
大致架构: 前端:html5+ajax 后端:java (struts框架相关) 碰到问题: 后台coder给我提供一个接口./file/uploader.do?upFile=?,让我上传文件对应up ...
- (MHA+MYSQL-5.7增强半同步)高可用架构设计与实现
架构使用mysql5.7版本基于GTD增强半同步并行复制配置 reploication 一主两从,使用MHA套件管理整个复制架构,实现故障自动切换高可用 优势: ...
- spring自定义注解的使用
前几天写了一个消息中间件(kafka)的封装,业务方发现消费者需要配置的东西太多(每增加一个topic和实现类都需要在配置文件中加,会显得很繁琐).于是我为了尽量减少这个XML配置,采用注解的方式来获 ...