题目大意

给定一个N*M大小的地板,要求你用1*2大小的砖块把地板铺满,问你有多少种方案?

题解

刚开始时看的是挑战程序设计竞赛上的关于铺砖块问题的讲解,研究一两天楞是没明白它代码是怎么写的,智商捉急,上面是用逐格进行转移的,据说神马插头DP。。。坑爹啊。。。然后果断放弃研究了。。。我们还是逐行的进行转移,这样比较好理解,方程表示为:dp[i][j]+=dp[i-1][k](能够从上一行的状态k转移到当前状态j)。我们需要枚举出符合要求的状态j和k,如果第i-1行p列没有放,那么第i行的p列肯定需要放置一个竖块,如果第i-1行p列放了,那么i行的p列可以不用放,如果第i-1行的p列和p+1列都放了,那么我们可以在第i行的p列和p+1列横着放置一个砖块。

我们用dfs实现,那么上述三种情况可以分别表示为

dfs(step+1,s1<<1|1,s2<<1,line); 竖放
dfs(step+1,s1<<1,s2<<1|1,line);不放
dfs(step+2,s1<<2|3,s2<<2|3,line);横放

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define MAXN 15
typedef long long LL;
LL dp[MAXN][1<<MAXN];
int n,m;
void dfs(int step,int s1,int s2,int line)
{
if(step==m)
{
dp[line][s1]+=dp[line-1][s2];
return;
}
dfs(step+1,s1<<1|1,s2<<1,line);
dfs(step+1,s1<<1,s2<<1|1,line);
if(step+2<=m)
dfs(step+2,s1<<2|3,s2<<2|3,line);
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF&&(n+m))
{
memset(dp,0,sizeof(dp));
dp[0][(1<<m)-1]=1;
for(int i=1; i<=n; i++)
dfs(0,0,0,i);
printf("%I64d\n",dp[n][(1<<m)-1]);
}
return 0;
}

POJ2411 - Mondriaan's Dream(状态压缩DP)的更多相关文章

  1. 【poj2411】Mondriaan's Dream 状态压缩dp

    AC传送门:http://vjudge.net/problem/POJ-2411 [题目大意] 有一个W行H列的广场,需要用1*2小砖铺盖,小砖之间互相不能重叠,问有多少种不同的铺法? [题解] 对于 ...

  2. poj 2411 Mondriaan's Dream(状态压缩dP)

    题目:http://poj.org/problem?id=2411 Input The input contains several test cases. Each test case is mad ...

  3. poj2411 Mondriaan's Dream (轮廓线dp、状压dp)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17203   Accepted: 991 ...

  4. poj 2411 Mondriaan's Dream_状态压缩dp

    题意:给我们1*2的骨牌,问我们一个n*m的棋盘有多少种放满的方案. 思路: 状态压缩不懂看,http://blog.csdn.net/neng18/article/details/18425765 ...

  5. [poj2411] Mondriaan's Dream (状压DP)

    状压DP Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One nigh ...

  6. POJ2411 Mondriaan's Dream 题解 轮廓线DP

    题目链接:http://poj.org/problem?id=2411 题目大意 给你一个 \(n \times m (1 \le n,m \le 11)\) 的矩阵,你需要用若干 \(1 \time ...

  7. 【POJ2411】Mondriaan's Dream(轮廓线DP)

    [POJ2411]Mondriaan's Dream(轮廓线DP) 题面 Vjudge 题解 这题我会大力状压!!! 时间复杂度大概是\(O(2^{2n}n^2)\),设\(f[i][S]\)表示当前 ...

  8. 状态压缩dp(hdu2167,poj2411)

    hdu2167 http://acm.hdu.edu.cn/showproblem.php?pid=2167 给定一个N*N的板子,里面有N*N个数字,选中一些数字,使得和最大 要求任意两个选中的数字 ...

  9. 状态压缩DP(大佬写的很好,转来看)

    奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...

随机推荐

  1. Flask, Tornado, GEvent, 以及它们的结合的性能比较

    Flask, Tornado, GEvent, 以及它们的结合的性能比较 英文: http://blog.wensheng.com/2011/10/performance-of-flask-torna ...

  2. IText 生成横向的doc文档

    IText生成doc文档需要三个包:iTextAsian.jar,iText-rtf-2.1.4.jar,iText-2.1.4.jar 亲测无误,代码如下: import com.lowagie.t ...

  3. H264/AVC视频解码时AVC1和H264的区别

    AVC1与H264的区别 http://blog.csdn.net/qiuchangyong/article/details/6660253 H.264 Video Types The followi ...

  4. Android:删除模拟器中没用的应用

    进入模拟器,Setting->apps ->找到相应的app,选择uninstall 即可!

  5. 转:数据包经由路由转发时源、目的IP地址及MAC地址变化情况

    数据包经由路由转发时源.目的IP地址及MAC地址变化情况.  IP数据包经由路由转发的时候源ip,目的ip,源MAC,目的mac是否发生改变,如何改变?   A—–(B1-B2)—–(C1-C2)—— ...

  6. 200. Number of Islands

    题目: Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is s ...

  7. POJ3295——Tautology

    Tautology Description WFF 'N PROOF is a logic game played with dice. Each die has six faces represen ...

  8. Vim的tag系统

    tag标识符存储在ctags等程序生成的文件里 :tag和<C-]>命令跳转到光标所在符号(若光标不再符号上则为右边第一个符号)的定义处 还有g+鼠标左键和<C-鼠标左键> & ...

  9. Regular Ball Super Ball

    Description: Regular Ball Super Ball Create a class Ball. Ball objects should accept one argument fo ...

  10. Oracle数据库生成UUID

    从Data Ghost的blog得知,原来可以用Oracle来生成UUID,做法很简单,如下: select sys_guid() from dual;  数据类型是 raw(16) 有32个字符.