HDU 2586 + HDU 4912 最近公共祖先
先给个LCA模板
HDU 1330(LCA模板)
#include <cstdio>
#include <cstring>
#define N 40005
struct Edge{
int x,y,d,ne;
};
Edge e[N*],e2[N*];
int be[N],be2[N],all,all2,n,m;
bool vis[N];
int fa[N];
int ancestor[N][];
int dis[N]; void add(int x, int y, int d, Edge e[], int be[], int &all)
{
e[all].y=y;e[all].x=x;e[all].d=d;
e[all].ne=be[x];
be[x]=all++; e[all].y=x;e[all].x=y;e[all].d=d;
e[all].ne=be[y];
be[y]=all++;
} void init()
{
all=all2=;
memset(be,-,sizeof(be));
memset(be2,-,sizeof(be2));
memset(vis,,sizeof(vis));
for(int i=; i<=n; i++)
fa[i]=i;
} int find(int x)
{
if(fa[x]!=x) fa[x]=find(fa[x]);
return fa[x];
} void tarjan(int u)
{
vis[u]=;
for(int i=be2[u]; i!=-; i=e2[i].ne)
if(vis[e2[i].y])
ancestor[e2[i].d][]=find(e2[i].y); for(int i=be[u]; i!=-; i=e[i].ne)
if(!vis[e[i].y])
{
dis[e[i].y]=dis[u]+e[i].d;
tarjan(e[i].y);
fa[e[i].y]=u;
}
} int main()
{
int tt;
scanf("%d",&tt);
while(tt--)
{
int x,y,d;
scanf("%d%d",&n,&m);
init();
for(int i=; i<n-; i++)
{
scanf("%d%d%d",&x,&y,&d);
add(x,y,d,e,be,all);
}
for(int i=; i<m; i++)
{
scanf("%d%d",&x,&y);
add(x,y,i,e2,be2,all2);
ancestor[i][]=x;
ancestor[i][]=y;
}
dis[]=;
tarjan();//从根节点开始
for(int i=; i<m; i++)
printf("%d\n",dis[ancestor[i][]]+dis[ancestor[i][]]-*dis[ancestor[i][]]);
}
return ;
}
HDU 4912
Paths on the tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 428 Accepted Submission(s): 128
There are m paths on the tree. bobo would like to pick some paths while any two paths do not share common vertices.
Find the maximum number of paths bobo can pick.
The first line contains n,m (1≤n,m≤105). Each of the following (n - 1) lines contain 2 integers ai,bi denoting an edge between vertices ai and bi (1≤ai,bi≤n). Each of the following m lines contain 2 integers ui,vi denoting a path between vertices ui and vi (1≤ui,vi≤n).
A single integer, the maximum number of paths.
1 2
1 3
1 2
1 3
7 3
1 2
1 3
2 4
2 5
3 6
3 7
2 3
4 5
6 7
2
贪心法,找出给定路径左右节点的最近公共祖先,按其最近公共祖先的深度从大到小插入,每次插入将其子树标记,之后若路径节点若已访问则判不可行,否则ans+1
#include <iostream>
#include <cstring>
#include <cstdio>
#include <vector>
#define max(x,y) ((x)>(y)?(x):(y))
#define NN 200002 // number of house
using namespace std; int be[NN],all,ans;
bool vis2[NN],vis3[NN]; typedef struct node{
int v;
int d;
struct node *nxt;
}NODE; struct edge{
int u,v,ne;
}e[NN]; NODE *Link1[NN];
NODE edg1[NN * ]; NODE *Link2[NN];
NODE edg2[NN * ]; int idx1, idx2, N, M;
int res[NN][];
int fat[NN];
int vis[NN];
int dis[NN]; void Add(int u, int v, int d, NODE edg[], NODE *Link[], int &idx){
edg[idx].v = v;
edg[idx].d = d;
edg[idx].nxt = Link[u];
Link[u] = edg + idx++; edg[idx].v = u;
edg[idx].d = d;
edg[idx].nxt = Link[v];
Link[v] = edg + idx++;
} int find(int x){
if(x != fat[x]){
return fat[x] = find(fat[x]);
}
return x;
} void Tarjan(int u){
vis[u] = ;
fat[u] = u; for (NODE *p = Link2[u]; p; p = p->nxt){
if(vis[p->v]){
res[p->d][] = find(p->v);
}
} for (NODE *p = Link1[u]; p; p = p->nxt){
if(!vis[p->v]){
dis[p->v] = dis[u] + p->d;
Tarjan(p->v);
fat[p->v] = u;
}
}
} void add(int fa,int x,int y)
{
++all;
e[all].u=x;
e[all].v=y;
e[all].ne=be[fa];
be[fa]=all;
} void color(int u)
{
for (NODE *p = Link1[u]; p; p = p->nxt)
if(vis3[p->v] && !vis2[p->v])
{
vis2[p->v]=;
color(p->v);
}
} void dfs(int u)
{
vis[u]=;
for (NODE *p = Link1[u]; p; p = p->nxt)
if(!vis[p->v]) dfs(p->v); for (int i=be[u]; i!=-; i=e[i].ne)
if(!vis2[e[i].u] && !vis2[e[i].v])
{
vis2[u]=;
ans++;
color(u);
}
vis3[u]=; } int main() {
int T, i, u, v, d;
while(scanf("%d%d", &N, &M)!=EOF)
{
idx1 = ;
memset(Link1, , sizeof(Link1));
for (i = ; i < N; i++){
scanf("%d%d", &u, &v);
d=;
Add(u, v, d, edg1, Link1, idx1);
} idx2 = ;
memset(Link2, , sizeof(Link2));
for (i = ; i <= M; i++){
scanf("%d%d", &u, &v);
Add(u, v, i, edg2, Link2, idx2);
res[i][] = u;
res[i][] = v;
} memset(vis, , sizeof(vis));
dis[] = ;
Tarjan(); all=;
memset(be,-,sizeof(be));
memset(vis,,sizeof(vis));
memset(vis2,,sizeof(vis2));
memset(vis3,,sizeof(vis3));
for(int i=;i<=M; i++)
add(res[i][],res[i][],res[i][]);
for(int i=; i<=N; i++)
fat[i]=i;
ans=;
dfs();
printf("%d\n",ans);
}
return ;
}
HDU 2586 + HDU 4912 最近公共祖先的更多相关文章
- LCA(最近公共祖先)--tarjan离线算法 hdu 2586
HDU 2586 How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- hdu 2586(最近公共祖先LCA)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 思路:在求解最近公共祖先的问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好 ...
- HDU 2586 How far away ?(LCA模板 近期公共祖先啊)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...
- LCA最近公共祖先-- HDU 2586
题目链接 Problem Description There are n houses in the village and some bidirectional roads connecting t ...
- hdu - 2586 How far away ?(最短路共同祖先问题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 最近公共祖先问题~~LAC离散算法 题目大意:一个村子里有n个房子,这n个房子用n-1条路连接起 ...
- HDU 4547 CD操作 (LCA最近公共祖先Tarjan模版)
CD操作 倍增法 https://i.cnblogs.com/EditPosts.aspx?postid=8605845 Time Limit : 10000/5000ms (Java/Other) ...
- HDU 2586 (LCA模板题)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2586 题目大意:在一个无向树上,求一条链权和. 解题思路: 0 | 1 / \ 2 3 ...
- HDU - 2586 How far away ?(LCA模板题)
HDU - 2586 How far away ? Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & ...
- HDU 2586 How far away ?【LCA】
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2586 How far away ? Time Limit: 2000/1000 MS (Java/Oth ...
随机推荐
- php输出错误屏蔽的函数
/** * 设置默认值方法 * @param mult $data * @param string $key key值 * @param string $default 默认值 */ public s ...
- WinForm中Component Class、User Control及Custom Control的区别和使用建议
reference: http://blog.csdn.net/redstonehe/article/details/1536549 .NET Framework 为您提供了开发和实现新控件的能力.除 ...
- Node.js 随记
http://nodejs.org/ 下载并安装 node.js 最新版本 运行cmd,输入npm install xxxxxx 回车,安装扩展模块,如:express,socket.io等 运行c ...
- linux源代码阅读笔记 linux文件系统(二)
上一篇文章说到linux文件系统中分为超级块,inode块,block块.inode块给出文件的权限,修改时间,大小等信息. 但是实际上,文件的数据是存储在block块中的.而inode块中给出了存储 ...
- Pyp 替代sed,awk的文本处理工具
Linux上文本处理工具虽不少,像cut,tr,join,split,paste,sort,uniq,sed,awk这些经典工具让人眼花缭乱,而且都太老了,使用方法都不太人性化,尤其awk,语法简直反 ...
- UVA 11174 Stand in a Line (组合+除法的求模)
题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1, ...
- Android开发--Activity生命周期回顾理解
Activity和Servlet一样,都用了回调机制.我们通过类比servlet来学习Activity.当一个servlet开发出来之后,该servlet运行于Web服务器中.服务器何时创建servl ...
- Rockethon 2015
A Game题意:A,B各自拥有两堆石子,数目分别为n1, n2,每次至少取1个,最多分别取k1,k2个, A先取,最后谁会赢. 分析:显然每次取一个是最优的,n1 > n2时,先手赢. 代码: ...
- Project Euler 94:Almost equilateral triangles 几乎等边的三角形
Almost equilateral triangles It is easily proved that no equilateral triangle exists with integral l ...
- 【Linux高频命令专题(5)】rmdir
简述 rmdir是常用的命令,该命令的功能是删除空目录,一个目录被删除之前必须是空的.(注意,rm - r dir命令可代替rmdir,但是有很大危险性.)删除某目录时也必须具有对父目录的写权限. 命 ...