在线最优化求解(Online Optimization)之四:RDA

不论怎样,简单截断、TG、FOBOS都还是建立在SGD的基础之上的,属于梯度下降类型的方法,这类型方法的优点就是精度比较高,并且TG、FOBOS也都能在稀疏性上得到提升。但是有些其它类型的算法,例如RDA从另一个方面来求解Online Optimization并且更有效地提升了特征权重的稀疏性。RDA(Regularized Dual Averaging)是微软十年的研究成果。RDA是Simple Dual Averaging Scheme一个扩展,由Lin Xiao发表于2010年[1]。

1. 算法原理

在RDA中,特征权重的更新策略为:

  公式(1)

其中表示梯度的积分平均值(积分中值);为正则项;为一个辅助的严格凸函数;是一个非负且非自减序列。

本质上,公式(1)中包含了3个部分:(1) 线性函数,包含了之前所有梯度(或次梯度)的平均值(dual average);(2) 正则项;(3) 额外正则项,它是一个严格凸函数。

2. L1-RDA

我们下面来看看在L1正则化下,RDA中的特征权重更新具有什么样的形式以及如何产生稀疏性。

,由于是一个关于的严格凸函数,不妨令,此外将非负非自减序列定义为,将L1正则化代入公式(1)有:

   公式(2)

直接求解上式看上去非常困难,但是我们可以仿照上一篇FOBOS中采用的方法,针对特征权重的各个维度将其拆解成N个独立的标量最小化问题:

    公式(3)

这里;公式(3)就是一个无约束的非平滑最优化问题。其中第2项处不可导。假设是其最优解,并且定义的次导数,那么有:

   公式(4)

如果对公式(3)求导(求次导数)并等于0,则有:

   公式(5)

由于,我们针对公式(5)分三种情况进行讨论:

-------------------------------------

(1) 当时:

还可以分为三种情况:

(a) 如果,由公式(5)可得,满足公式(4)

(b) 如果,由公式(4)可得,那么有,不满足公式(5)

(c) 如果,由公式(4)可得,那么有,不满足公式(5)

所以,当时,

(2) 当时:

采用相同的分析方法可以得到,此时,即:

(3) 当时:

采用相同的分析方法可以得到,此时,即:

--------------------------------------

综合上面的分析,可以得到L1-RDA特征权重的各个维度更新的方式为:

      公式(6)

这里我们发现,当某个维度上累积梯度平均值的绝对值小于阈值的时候,该维度权重将被置,特征权重的稀疏性由此产生。

根据公式(6),可以设计出L1-RDA的算法逻辑为:

3. L1-RDA与FOBOS的比较

在上一篇博文中中我们看到了L1-FOBOS实际上是TG的一种特殊形式,在L1-FOBOS中,进行“截断”的判定条件是。通常会定义的正相关函数(),因此L1-FOBOS的“截断阈值”为,随着的增加,这个阈值会逐渐降低。

相比较而言,从公式(6)可以看出,L1-RDA的“截断阈值”为,是一个常数,并不随着而变化,因此可以认为L1-RDA比L1-FOBOS在截断判定上更加aggressive,这种性质使得L1-RDA更容易产生稀疏性;此外,RDA中判定对象是梯度的累加平均值,不同于TG或L1-FOBOS中针对单次梯度计算的结果进行判定,避免了由于某些维度由于训练不足导致截断的问题。并且通过调节一个参数,很容易在精度和稀疏性上进行权衡。

参考文献

[1]  Lin Xiao. Dual Averaging Methods for Regularized Stochastic Learning and Online Optimization. Journal of Machine Learning Research, 2010

在线最优化求解(Online Optimization)之四:RDA的更多相关文章

  1. 在线最优化求解(Online Optimization)之五:FTRL

    在线最优化求解(Online Optimization)之五:FTRL 在上一篇博文中中我们从原理上定性比较了L1-FOBOS和L1-RDA在稀疏性上的表现.有实验证明,L1-FOBOS这一类基于梯度 ...

  2. 在线最优化求解(Online Optimization)之一:预备篇

    在线最优化求解(Online Optimization)之一:预备篇 动机与目的 在实际工作中,无论是工程师.项目经理.产品同学都会经常讨论一类话题:“从线上对比的效果来看,某某特征或因素对xx产品的 ...

  3. 在线最优化求解(Online Optimization)之三:FOBOS

    在线最优化求解(Online Optimization)之三:FOBOS FOBOS (Forward-Backward Splitting)是由John Duchi和Yoram Singer提出的[ ...

  4. 在线最优化求解(Online Optimization)之二:截断梯度法(TG)

    在线最优化求解(Online Optimization)之二:截断梯度法(TG) 在预备篇中我们做了一些热身,并且介绍了L1正则化在Online模式下也不能产生较好的稀疏性,而稀疏性对于高维特征向量以 ...

  5. Angular4.0从入门到实战打造在线竞拍网站学习笔记之四--数据绑定&管道

    Angular4.0基础知识之组件 Angular4.0基础知识之路由 Angular4.0依赖注入 数据绑定 数据绑定允许你将组件控制器的属性和方法与组件的模板连接起来,大大降低了开发时的编码量. ...

  6. Alink漫谈(十二) :在线学习算法FTRL 之 整体设计

    Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...

  7. Alink漫谈(十三) :在线学习算法FTRL 之 具体实现

    Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 目录 Alink漫谈(十三) :在线学习算法FTRL 之 具体实现 0x00 摘要 0x01 回顾 0x02 在线训练 2.1 预置模型 ...

  8. FTRL笔记

    这篇笔记主要参考冯杨的五篇博客:在线最优化求解(Online Optimization).因为对于在线学习方法,稀疏性问题需要特别关注:每次在线学习一个新 instance 的时候,优化方向并不一定是 ...

  9. [笔记]FTRL与Online Optimization

    1. 背景介绍 最优化求解问题可能是我们在工作中遇到的最多的一类问题了:从已有的数据中提炼出最适合的模型参数,从而对未知的数据进行预测.当我们面对高维高数据量的场景时,常见的批量处理的方式已经显得力不 ...

随机推荐

  1. CoreAnimation 核心动画一 (一些常用属性 和 方法)

    1.常用属性: frame   bounds   center   alpha    Transition 过渡    transform 动画效果 2.常用方法: +(void)setAnimati ...

  2. 时间类型(DataTime)赋空值

    暂时只发现这一个方法 如果直接Datetime time=DBNull.Value;会报null与DataTime没有隐式转换 SqlCommand cmd = SqlCommand(conn); / ...

  3. WPF DataGrid 操作列 类似 LinkButton

    WPF中没有类似LinkButton,所以只有运用Button及样式来实现LinkButton. DataGrid 操作列 实现 多个类似LinkButton按钮: 具体实现代码如下: <Dat ...

  4. 通过js判断手机访问跳转到手机站

    第一种方法: <script> ){ //pc //window.location.href="电脑网址"; }else{ //shouji window.locati ...

  5. Today’s dictation

    A united nations expert on human rights in north korea has warned that the country's dictator, kim j ...

  6. 6个超炫酷的HTML5电子书翻页动画

    相信大家一定遇到过一些电子书网站,我们可以通过像看书一样翻页来浏览电子书的内容.今天我们要分享的HTML5应用跟电子书翻页有关,我们精选出来的6个电子书翻页动画都非常炫酷,而且都提供源码下载,有需要的 ...

  7. 10款强大的jQuery/HTML5应用新鲜出炉

    1.CSS3/jQuery自定义弹出窗口 多种弹出动画 这是一款利用jQuery和CSS3实现的自定义弹出窗口,这可比浏览器默认的弹出窗口漂亮多了.弹出窗口中可以自定义html,十分灵活.另外最重要的 ...

  8. 《HTML5与CSS3基础教程》学习笔记 ——Four Day

    第十六章 1.    输入和元素 电子邮件框 <input type="email"> 搜索框 <input type="search"> ...

  9. 济南学习 Day 2 T3 am

    [问题描述]m× m的方阵上有n棵葱,你要修一些栅栏把它们围起来.一个栅栏是一段沿着网格建造的封闭图形(即要围成一圈) .各个栅栏之间应该不相交.不重叠且互相不包含.如果你最多修k个栅栏,那么所有栅栏 ...

  10. Linux磁盘与文件系统概念理解

    磁盘级别概念     这里讲的主要是网上所谓的老式磁盘,它是由一个个盘片组成的,我们先从个盘片结构讲起.如图1所示,图中的一圈圈灰色同心圆为一条条磁道,从圆心向外画直线,可以将磁道划分为若干个弧段,每 ...