hdu4291之矩阵快速幂
A Short problem
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1110 Accepted Submission(s): 436
Hence they prefer problems short, too. Here is a short one:
Given n (1 <= n <= 10
18), You should solve for
g(g(g(n))) mod 10
9 + 7
where
g(n) = 3g(n - 1) + g(n - 2)
g(1) = 1
g(0) = 0
Please process until EOF (End Of File).
1
2
1
42837
分析:假设g(g(g(n)))=g(x),x可能非常大,但是由于mod 10^9+7,所以可以求出x的循环节
求出x的循环节后,假设g(g(g(n)))=g(x)=g(g(y)),即x=g(y),y也可能非常大,但是由x的循环节可以求出y的循环节
所以最终结果只要进行矩阵快速幂即可求出
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<queue>
#include<algorithm>
#include<map>
#include<iomanip>
#define INF 99999999
using namespace std; const int mod1=1000000007;//求结果的循环节
const int mod2=222222224;//第1层的循环节,假设g(g(g(n)))=g(x),即mod2是x的循环节
const int mod3=183120;//第2层的循环节假设g(g(g(n)))=g(g(y)),即mod3是y的循化节 __int64 array[2][2],sum[2][2]; void MatrixMult(__int64 a[2][2],__int64 b[2][2],int mod){
__int64 c[2][2]={0};
for(int i=0;i<2;++i){
for(int j=0;j<2;++j){
for(int k=0;k<2;++k){
c[i][j]+=a[i][k]*b[k][j];
}
}
}
for(int i=0;i<2;++i){
for(int j=0;j<2;++j)a[i][j]=c[i][j]%mod;
}
} __int64 Matrix(__int64 k,int mod){
array[0][0]=3,array[1][1]=0;
array[0][1]=array[1][0]=1;
sum[0][0]=sum[1][1]=1;
sum[0][1]=sum[1][0]=0;
while(k){
if(k&1)MatrixMult(sum,array,mod);
MatrixMult(array,array,mod);
k>>=1;
}
return sum[0][0];
} int main(){
/*__int64 a=0,b=1;
for(int i=2;;++i){//求循环节
a=(b*3+a)%mod2;
a=a^b;
b=a^b;
a=a^b;
if(a == 0 && b == 1){cout<<i-1<<endl;break;}//i-1=222222224
}*/
__int64 n;
while(scanf("%I64d",&n)!=EOF){
if(n>=2)n=Matrix(n-1,mod3);
if(n>=2)n=Matrix(n-1,mod2);
if(n>=2)n=Matrix(n-1,mod1);
printf("%I64d\n",n);
}
return 0;
}
hdu4291之矩阵快速幂的更多相关文章
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
随机推荐
- Android 注解的一些应用以及原理
在这边文章之前你首先需要对java 的注解部分有一个基本的了解(不需要太过的深入). 简单来说,注解这个东西就是用于辅助我们开发java代码的,注解本身无法干扰java源代码的执行. 在android ...
- Bootstrap学习笔记上(带源码)
阅读目录 排版 表单 网格系统 菜单.按钮 做好笔记方便日后查阅o(╯□╰)o bootstrap简介: ☑ 简单灵活可用于架构流行的用户界面和交互接口的html.css.javascript工具集 ...
- JAVA多线程一
介绍 线程是操作系统的最小单位,一个进程可以创建多个线程. 线程有五种状态,分别是新建.就绪.运行.阻塞.死亡状态. 多线程可以提高执行效率,但是如果单线程可以完成的任务,使用多线程反而会增加不必要的 ...
- 【LeetCode 238】Product of Array Except Self
Given an array of n integers where n > 1, nums, return an array output such that output[i] is equ ...
- 【转】Linux mount/unmount命令
转自:http://www.cnblogs.com/xd502djj/p/3809375.html 格式:mount [-参数] [设备名称] [挂载点] 其中常用的参数有:-a 安装在/etc/fs ...
- c++中实现委托
成员函数指针与高性能的C++委托(上篇) 撰文:Don Clugston 引子 标准C++中没有真正的面向对象的函数指针.这一点对C++来说是不幸的,因为面向对象的指针(也叫做"闭包(clo ...
- HighChart 实现从后台取数据来实时更新柱状和折线组图
前段时间公司让弄图表,给我说有HighCharts这个js插件,于是上网上搜,由于本人是写后端的,对于JavaScript和jQuery不是很熟悉,虽然找到了模板,但是还是不明白,所以一点一点的改,但 ...
- 自己使用python webob,paste.deploy,wsgi总结
paste.deploy就是一个可以配置wsgi_app的工具,可以让服务器运行时,按照配置文件执行一系列的程序.需要使用.ini配置文件. (1)这里补充一下当时没看到的配置文件 1.[app:ma ...
- bzoj 3757 苹果树(树上莫队算法)
[题意] 有若干个询问,询问路径u,v上的颜色总数,另外有要求a,b,意为将a颜色看作b颜色. [思路] vfk真是神系列233. Quote: 用S(v, u)代表 v到u的路径上的结点的集合. 用 ...
- Java执行groovy脚本
Binding binding = new Binding(); binding.setVariable("foo", new Integer(2)); GroovyShell s ...