POJ 3169 Layout (spfa+差分约束)
题目链接:http://poj.org/problem?id=3169
差分约束的解释:http://www.cnblogs.com/void/archive/2011/08/26/2153928.html
我也不是特别理解,要是给你a - b <= k 就建一条b->a权值为k的有向边,要是a - b >= k 就建一条a -> b边权是-k的有向边,要是让你求n到1的最大差,就是让你求1到n的最短距离。
差分约束系统有两种方式可以求解,最短路和最长路。当我们把不等式整理成d[a]+w<=d[b]时,我们求最长路。整理成d[a]+w>=d[b]时,我们求最短路。当求最短路时,我们通常要把各点距离初始化为正无穷,求最短路,把各点距离逐渐减小,直到符合所有不等式。也就是开始各点不符合条件,后来通过减小变得符合了,所以一定是符合条件的最大值。既然是求最大值,并且是减小各点距离,也就是把各点由数轴的右侧向左侧拉,所以我们一定要选择一个最终在数轴最左侧的点,并初始化为0,把所有正无穷的点拉近到符合不等式。最长路同理。(转来的)
题目就是让你求1到n的最短距离,要是有负环输出-1,要是d[n]没有更新就输出-2。
我用spfa做的,但是题目有个隐含的条件是D[i + 1] - D[i] >= 0。所以还要建i + 1到i上的0边。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
const int MAXN = ;
const int INF = 1e9;
struct data {
int next , to , cost;
}edge[MAXN * MAXN];
int head[MAXN] , d[MAXN] , cont , cnt[MAXN];
bool vis[MAXN]; void init(int n) {
for(int i = ; i <= n ; i++) {
d[i] = INF;
head[i] = -;
vis[i] = false;
cnt[i] = ;
}
cont = ;
} inline void add(int u , int v , int cost) {
edge[cont].next = head[u];
edge[cont].to = v;
edge[cont].cost = cost;
head[u] = cont++;
} bool spfa(int s , int n) {
d[s] = ;
queue <int> que;
while(!que.empty()) {
que.pop();
}
que.push(s);
while(!que.empty()) {
int temp = que.front();
que.pop();
vis[temp] = false;
for(int i = head[temp] ; ~i ; i = edge[i].next) {
int v = edge[i].to;
if(d[v] > d[temp] + edge[i].cost) {
d[v] = d[temp] + edge[i].cost;
if(!vis[v]) {
que.push(v);
vis[v] = true;
}
cnt[v]++;
if(cnt[v] >= n)
return false;
}
}
}
return true;
} int main()
{
int n , m1 , m2 , u , v , w;
while(~scanf("%d %d %d" , &n , &m1 , &m2)) {
init(n);
while(m1--) {
scanf("%d %d %d" , &u , &v , &w);
add(u , v , w);
}
while(m2--) {
scanf("%d %d %d" , &u , &v , &w);
add(v , u , -w);
}
//隐含条件
for(int i = ; i < n ; i++) {
add(i + , i , );
}
if(spfa( , n)) {
if(d[n] >= INF)
printf("-2\n");
else
printf("%d\n" , d[n]);
}
else
printf("-1\n");
}
}
POJ 3169 Layout (spfa+差分约束)的更多相关文章
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- POJ 3169 Layout 【差分约束】+【spfa】
<题目链接> 题目大意: 一些母牛按序号排成一条直线.有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没有最大距离输出-1,如果1.n之间距离任意就 ...
- poj 3169 Layout (差分约束)
3169 -- Layout 继续差分约束. 这题要判起点终点是否连通,并且要判负环,所以要用到spfa. 对于ML的边,要求两者之间距离要小于给定值,于是构建(a)->(b)=c的边.同理,对 ...
- POJ 3169 Layout(差分约束+最短路)题解
题意:有一串数字1~n,按顺序排序,给两种要求,一是给定u,v保证pos[v] - pos[u] <= w:二是给定u,v保证pos[v] - pos[u] >= w.求pos[n] - ...
- poj 3169 Layout(差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6549 Accepted: 3168 Descriptio ...
- POJ 3167 Layout(差分约束)
题面 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...
- POJ 3169 Layout (差分约束系统)
Layout 题目链接: Rhttp://acm.hust.edu.cn/vjudge/contest/122685#problem/S Description Like everyone else, ...
- O - Layout(差分约束 + spfa)
O - Layout(差分约束 + spfa) Like everyone else, cows like to stand close to their friends when queuing f ...
随机推荐
- 1208. Legendary Teams Contest(dfs)
1208 简单dfs 对于每个数 两种情况 取还是不取 #include <iostream> #include<cstdio> #include<cstring> ...
- 基于AJAX的长轮询(long-polling)方式实现简单的聊天室程序
原理: 可以看:http://yiminghe.javaeye.com/blog/294781 AJAX 的出现使得 JavaScript 可以调用 XMLHttpRequest 对象发出 HTTP ...
- sqlserver 导入/导出Excel
--从Excel文件中,导入数据到SQL数据库中,很简单,直接用下面的语句: /*=========================================================== ...
- linux lnmp编译安装
关闭SELINUX vi /etc/selinux/config #SELINUX=enforcing #注释掉 #SELINUXTYPE=targeted #注释掉 SELINUX=disabled ...
- 转载RabbitMQ入门(5)--主题
主题(topic) (使用Java客户端) 在先前的指南中我们改进了我们的日志系统.取代使用fanout类型的交易所,那个仅仅有能力实现哑的广播,我们使用一个direct类型的交易所,获得一个可以有选 ...
- PL/Sql 中创建、调试、调用存储过程
存储过程的详细建立方法 1.先建存储过程 左边的浏览窗口选择 procedures ,会列出所有的存储过程,右击文件夹procedures单击菜单"new",弹出 template ...
- Storm实战常见问题及解决方案
该文档为实实在在的原创文档,转载请注明: http://blog.sina.com.cn/s/blog_8c243ea30101k0k1.html 类型 详细 备注 该文档是群里几个朋友在storm实 ...
- IOCP模型
IOCP http://blog.csdn.net/zhongguoren666/article/details/7386592 Winsock IO模型之IOCP模型 http://blog.csd ...
- <转>如何测试大型ERP软件?
大型ERP软件是一个在企业范围内部应用的.高度集成的软件,且操作频繁,数据在各业务系统之间高度共享.那么针对大型ERP软件的特点,我们应该怎么测试呢?要使用怎样的测试方法?需要什么样的测试人员?... ...
- ASP.NET导出excel表方法汇总
asp.net里导出excel表方法汇总 1.由dataset生成 public void CreateExcel(DataSet ds,string typeid,string FileName) ...