HDU5087——Revenge of LIS II(BestCoder Round #16)
Revenge of LIS II
Problem Description
In computer science, the longest increasing subsequence problem is to find a subsequence of a given sequence in which the subsequence's elements are in sorted order, lowest to highest, and in which the subsequence is as long as possible. This subsequence is not necessarily contiguous, or unique.
---Wikipedia
Today, LIS takes revenge on you, again. You mission is not calculating the length of longest increasing subsequence, but the length of the second longest increasing subsequence.
Two subsequence is different if and only they have different length, or have at least one different element index in the same place. And second longest increasing subsequence of sequence S indicates the second largest one while sorting all the increasing subsequences of S by its length.
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case begins with an integer N, indicating the length of the sequence. Then N integer Ai follows, indicating the sequence.
[Technical Specification]
1. 1 <= T <= 100
2. 2 <= N <= 1000
3. 1 <= Ai <= 1 000 000 000
Output
For each test case, output the length of the second longest increasing subsequence.
Sample Input
3 2 1 1 4 1 2 3 4 5 1 1 2 2 2
Sample Output
1 3 2
Hint
For the first sequence, there are two increasing subsequence: [1], [1]. So the length of the second longest increasing subsequence is also 1, same with the length of LIS.
题目大意:
求第二长的绝对递增子序列的长度。
解题思路:
错误思路:
求出用于求最长绝对递增子序列的dp数组,sort之后输出dp[N-1]。
未考虑到dp[N]可以有多种方式构成。eg:1 1 2 就应该输出2。
正确思路:
每次求dp[i]的时候,用c[i]记录有多少种情况来构成此最优解。
求出ans=max(dp[1],dp[2]...dp[N]).
在求出 sum=sum{ c[i] | dp[i]==ans }
若sum!=1 说明最优解有多种可能的构成方式。输出ans即可。
若sum==1 输出ans-1
Code:
/*************************************************************************
> File Name: BestCode#16_1002.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年11月01日 星期六 17时44分05秒
************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#include<cmath>
#include<bitset>
#include<climits>
#define MAXN 5000
using namespace std;
int dp[MAXN];
long long a[MAXN];
int flag[MAXN];
int main()
{
int T;
cin>>T;
while (T--)
{
int N;
cin>>N;
for (int i=;i<=N;i++){
scanf("%I64d",&a[i]);
dp[i]=,flag[i]=;
}
int ans=;
for (int i=;i<=N;i++)
{
for (int j=;j<i;j++)
if (a[j]<a[i])
{
if (dp[i]<dp[j]+)
dp[i]=dp[j]+,flag[i]=flag[j];
else if (dp[i]==dp[j]+)
flag[i]=;
}
if (ans<dp[i]) ans=dp[i];
}
int sum=;
for (int i=;i<=N;i++)
if (ans==dp[i]) sum+=flag[i];
if (sum>)
printf("%d\n",ans);
else
printf("%d\n",ans-);
}
return ;
}
HDU5087——Revenge of LIS II(BestCoder Round #16)的更多相关文章
- hdu5087——Revenge of LIS II
Revenge of LIS II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- HDU5086——Revenge of Segment Tree(BestCoder Round #16)
Revenge of Segment Tree Problem DescriptionIn computer science, a segment tree is a tree data struct ...
- hdu 5086 Revenge of Segment Tree(BestCoder Round #16)
Revenge of Segment Tree Time Limit: 4000/20 ...
- hdu5087 Revenge of LIS II (dp)
只要理解了LIS,这道题稍微搞一下就行了. 求LIS(最长上升子序列)有两种方法: 1.O(n^2)的算法:设dp[i]为以a[i]结尾的最长上升子序列的长度.dp[i]最少也得是1,就初始化为1,则 ...
- HDU5087 Revenge of LIS II (LIS变形)
题目链接:pid=5087">http://acm.hdu.edu.cn/showproblem.php?pid=5087 题意: 求第二长的最长递增序列的长度 分析: 用step[i ...
- HDU 5078 Revenge of LIS II(dp LIS)
Problem Description In computer science, the longest increasing subsequence problem is to find a sub ...
- HDOJ 5087 Revenge of LIS II DP
DP的时候记录下能否够从两个位置转移过来. ... Revenge of LIS II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: ...
- BestCoder Round #16
BestCoder Round #16 题目链接 这场挫掉了,3挂2,都是非常sb的错误 23333 QAQ A:每一个数字.左边个数乘上右边个数,就是能够组成的区间个数,然后乘的过程注意取模不然会爆 ...
- hdu 5087 Revenge of LIS II ( LIS ,第二长子序列)
链接:hdu 5087 题意:求第二大的最长升序子序列 分析:这里的第二大指的是,全部的递增子序列的长度(包含相等的), 从大到小排序后.排在第二的长度 cid=546" style=&qu ...
随机推荐
- mysql时间处理
两种方式,一个是在数据库查询的时候就截取,另一个就是在使用的时候截取. 1.数据库 select date_format(日期字段,’%Y-%m-%d’) as ‘日期’ from test 2.ja ...
- Spark菜鸟学习营Day2 分布式系统需求分析
Spark菜鸟学习营Day2 分布式系统需求分析 本分析主要针对从原有代码向Spark的迁移.要注意的是Spark和传统开发有着截然不同的思考思路,所以我们需要首先对原有代码进行需求分析,形成改造思路 ...
- Json(2)-DataContractJsonSerializer
public static void DataContractSerializeDemo() { User user = new User { UserID = 1 ...
- Selenium-RC Python 2.7 环境配置
1.下载并安装Python http://www.python.org/getit/,我使用的是2.7.3的python版本 2.下载并安装setuptools[这个工具是python的基础包工具] ...
- 每日一“酷”之Cookie
Cookie---Http Cookie 作用:Cookie模块定义一些类来解析和创建HTTP cookie首部 Cookie模块为大多数符合RFC 2109的cookie实现一个解析器.这个实现没有 ...
- 1. opencv的初体验
http://guoming.me/opencv-config 这篇文章有讲解opencv的安装与配置 一些常用库 opencv_core249d.lib opencv_imgproc249d.li ...
- 如何访问Microsoft Azure Storage
首先先要创建存储账户 http://www.cnblogs.com/SignalTips/p/4119128.html 可以通过以下的几个方式访问 通过Visual Studio 2013 Commu ...
- SQL Server 数据库身份认证以及包含数据库
首先分为SQL Server 认证与Windows 身份认证. SQL Server 认证可以运行以下语句来查询 select * from sys.sql_logins 管理员可以直接修改密码,但无 ...
- Win8.1 IIS6 SQL SERVER 2012 执行 SqlServices.InstallSessionState 出错
新装了WIN8.1,感觉很不错. 新建了第一个站点是,在执行 SqlServices.InstallSessionState("localhost", null, SessionS ...
- http概述
HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW中使用的是HTTP/1.0的第 ...