容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法。

  问题是如何快速寻找这个东西是否存在。考虑仅将该位置左边出现的权值标1。那么若在值域上若关于x对称的两权值标号不同,说明他们的位置分别在两侧,也就说明存在等差子序列。那么只需要判断整体是否相同,哈希即可。

  哈希值需要动态维护,容易想到树状数组/线段树。从左到右依次处理并维护两个树状数组记录正反哈希值。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 10010
#define ul unsigned long long
int T,n,a[N];
ul tree[N],tree2[N],p[N];
void add(int k){ul x=p[k-];while (k<=n) tree[k]+=x,k+=k&-k;}
void add2(int k){ul x=p[n-k];while (k) tree2[k]+=x,k-=k&-k;}
ul query(int k){ul s=;while (k) s+=tree[k],k-=k&-k;return s;}
ul query2(int k){ul s=;while (k<=n) s+=tree2[k],k+=k&-k;return s;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2124.in","r",stdin);
freopen("bzoj2124.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();
for (int i=;i<=n;i++) a[i]=read();
p[]=;for (int i=;i<=n;i++) p[i]=p[i-]*;
memset(tree,,sizeof(tree));
memset(tree2,,sizeof(tree2));
bool flag=;
for (int i=;i<=n;i++)
{
if (a[i]-<n-a[i])
{
if (query(a[i]-)*p[n-(a[i]<<)+]!=query2(a[i]+)-query2(a[i]<<)) {flag=;break;}
}
else
{
if (query2(a[i]+)*p[a[i]-(n-a[i])-]!=query(a[i]-)-query(a[i]-(n-a[i])-)) {flag=;break;}
}
add(a[i]);add2(a[i]);
}
if (flag) printf("Y\n");else printf("N\n");
}
return ;
}

BZOJ2124 等差子序列(树状数组+哈希)的更多相关文章

  1. 【BZOJ2124】等差子序列 树状数组维护hash值

    [BZOJ2124]等差子序列 Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N ...

  2. CF452F Permutations/Luogu2757 等差子序列 树状数组、Hash

    传送门--Luogu 传送门--Codeforces 如果存在长度\(>3\)的等差子序列,那么一定存在长度\(=3\)的等差子序列,所以我们只需要找长度为\(3\)的等差子序列.可以枚举等差子 ...

  3. bzoj 2124 等差子序列 树状数组维护hash+回文串

    等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 1919  Solved: 713[Submit][Status][Discuss] Desc ...

  4. 【bzoj5157】[Tjoi2014]上升子序列 树状数组

    题目描述 求一个数列本质不同的至少含有两个元素的上升子序列数目模10^9+7的结果. 题解 树状数组 傻逼题,离散化后直接使用树状数组统计即可.由于要求本质不同,因此一个数要减去它前一次出现时的贡献( ...

  5. Maximum Subsequence Sum【最大连续子序列+树状数组解决】

    Problem Description 给定K个整数的序列{ N1, N2, ..., NK },其任意连续子序列可表示为{ Ni, Ni+1, ..., Nj },其中 1 <= i < ...

  6. bzoj5157: [Tjoi2014]上升子序列(树状数组LIS)

    5157: [Tjoi2014]上升子序列 题目:传送门 题解: 学一下nlogn的树状数组求最长上生子序列就ok(%爆大佬) 离散化之后,用一个数组记录一下,直接树状数组做 吐槽:妈耶...一开始不 ...

  7. BZOJ 3173 最长上升子序列(树状数组+二分+线段树)

    给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...

  8. hdu 5773 The All-purpose Zero 最长上升子序列+树状数组

    题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...

  9. bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)

    3173: [Tjoi2013]最长上升子序列 题目:传送门 题解:  好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...

随机推荐

  1. [08] AOP基本概念和使用

    1.什么是AOP AOP = Aspect Oriental Programing,即面向切面编程.什么概念,我们看如下的图片: 三个方法中,重复使用了代码A和代码B,典型的场景比如"开启事 ...

  2. odoo 订餐系统之消息提醒

    打算入手odoo开发新的系统,先研究下开发的过程是如何的.案例模仿自带的订餐系统,此系统模块不多,但很典型,可以达到联系的目的.先记录下订餐系统消息提醒的开发过程. 1.添加自己的addons目录my ...

  3. select 下拉选中

    <body> <select name="" id=""> <option value="">张三< ...

  4. C# 如何物理删除有主外键约束的记录?存储过程实现

    十年河东,十年河西,莫欺少年穷 本篇主旨是如何物理删除有主外键约束的记录!那么,我们从主外键走起! 下面新建三张有主外键约束的表,分别为:系/学院表,专业班表,学生表,如下: CREATE TABLE ...

  5. JS回调函数--简单易懂有实例

    版权声明:本文为博主原创文章,转载请注明出处 初学js的时候,被回调函数搞得很晕,现在回过头来总结一下什么是回调函数. 我们先来看看回调的英文定义:A callback is a function t ...

  6. .net core实践系列之短信服务-Api的SDK的实现与测试

    前言 上一篇<.net core实践系列之短信服务-Sikiro.SMS.Api服务的实现>讲解了API的设计与实现,本篇主要讲解编写接口的SDK编写还有API的测试. 或许有些人会认为, ...

  7. C#_获取路径

    一.获取当前文件的路径 1.  System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName  获取模块的完整路径,包括文件名. ...

  8. nginx通过https方式反向代理多实例tomcat

    案例说明:前面一层nginx+Keepalived部署的LB,后端两台web服务器部署了多实例的tomcat,通过https方式部署nginx反向代理tomcat请求.配置一如下: 1)LB层的ngi ...

  9. 网络编程学习笔记:Socket编程

    文的主要内容如下: 1.网络中进程之间如何通信? 2.Socket是什么? 3.socket的基本操作 3.1.socket()函数 3.2.bind()函数 3.3.listen().connect ...

  10. jenkins 上命令各种找不到问题

    代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处.   在使用jenkins的时候,会使用一些命令行,有的时候明明在电脑的命令行(终端)可以执行 ...