P3201 [HNOI2009]梦幻布丁
题目描述
N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色.
输入输出格式
输入格式:
第一行给出N,M表示布丁的个数和好友的操作次数.
第二行N个数A1,A2...An表示第i个布丁的颜色从第三行起有M行,对于每个操作,若第一个数字是1表示要对颜色进行改变,其后的两个整数X,Y表示将所有颜色为X的变为Y,X可能等于Y.
若第一个数字为2表示要进行询问当前有多少段颜色,这时你应该输出一个整数. 0
输出格式:
针对第二类操作即询问,依次输出当前有多少段颜色.
输入输出样例
4 3
1 2 2 1
2
1 2 1
2
3
1
说明
1<=n,m<=100,000; 0<Ai,x,y<1,000,000
Solution:
本题平衡树+启发式合并。
考试的时候没有注意$x==y$的情况,结果只对了8个点,GG。
思路比较简单,我们用多棵平衡树维护每种颜色的下标,在对一种颜色的平衡树进行操作的同时可以处理出这个颜色的连续段数,具体来说,对于一种颜色,若新加入一个节点,就判断该节点能否与其前趋或者后继相接,讨论一下各种情况就好了。
在合并的时候用启发式的思想把节点少的树的每个节点暴力加入节点多的树中,若$size$少的树是变换后的颜色所在树,直接交换两种颜色的树根就可以了。
查询就直接输出全局的答案。
时间复杂度:$O(n\log ^2 n)$
(坑点:$x==y$时不需要操作)
代码:
/*Code by 520 -- 10.25*/
#include<bits/stdc++.h>
#pragma GCC optimize(2)
#define il inline
#define ll long long
#define RE register
#define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
#define debug printf("%s %d\n",__FUNCTION__,__LINE__)
using namespace std;
const int N=1e6+;
int n,m,root[N],ans,sum[N];
int col[N],ch[N][],cnt,fa[N],rnd[N],siz[N],date[N]; int gi(){
int a=;char x=getchar();
while(x<''||x>'') x=getchar();
while(x>=''&&x<='') a=(a<<)+(a<<)+(x^),x=getchar();
return a;
} il int newnode(int v){
++cnt;
date[cnt]=v,rnd[cnt]=rand(),siz[cnt]=,fa[cnt]=;
return cnt;
} il void up(int rt){
if(ch[rt][]) fa[ch[rt][]]=rt;
if(ch[rt][]) fa[ch[rt][]]=rt;
siz[rt]=siz[ch[rt][]]+siz[ch[rt][]]+;
} int merge(int x,int y){
if(!x||!y) return x+y;
if(rnd[x]<rnd[y]) {ch[x][]=merge(ch[x][],y),up(x);return x;}
else {ch[y][]=merge(x,ch[y][]),up(y);return y;}
} void split(int rt,int v,int &x,int &y){
if(!rt) {x=y=;return ;}
if(date[rt]>v) y=rt,split(ch[rt][],v,x,ch[y][]),up(y);
else x=rt,split(ch[rt][],v,ch[x][],y),up(x);
} il int kth(int rt,int v){
while(){
if(siz[ch[rt][]]>=v) rt=ch[rt][];
else if(siz[ch[rt][]]+<v) v-=siz[ch[rt][]]+,rt=ch[rt][];
else return rt;
}
} il int pre(int id,int v){
int x,y,ans; split(root[id],date[v]-,x,y);
ans=(!siz[x])?-:(kth(x,siz[x]));
root[id]=merge(x,y),fa[root[id]]=;
return ans;
} il int suc(int id,int v){
int x,y,ans; split(root[id],date[v],x,y);
ans=(!siz[y])?-:(kth(y,));
root[id]=merge(x,y),fa[root[id]]=;
return ans;
} il void ins(int id,int v){
int x=pre(id,v),y=suc(id,v);
if(x>&&y>&&date[x]==date[v]-&&date[y]==date[v]+) ans--,sum[id]--;
else if(x<&&y<||x>&&date[x]!=date[v]-&&(y<||date[y]!=date[v]+)||y>&&date[y]!=date[v]+&&(x<||date[x]!=date[v]-)) ans++,sum[id]++;
x=y=;
split(root[id],date[v]-,x,y),root[id]=merge(merge(x,v),y),fa[root[id]]=;
} void dfs(int id,int rt){
if(!rt) return;
dfs(id,ch[rt][]),dfs(id,ch[rt][]);
ch[rt][]=ch[rt][]=;
ins(id,rt);
} int main(){
n=gi(),m=gi(); int opt,x,y;
For(i,,n) {
col[i]=gi();
ins(col[i],newnode(i));
}
while(m--){
opt=gi();
if(opt==) {
x=gi(),y=gi();
if(x==y) continue;
else if(siz[root[x]]<=siz[root[y]]){
dfs(y,root[x]),root[x]=;ans-=sum[x],sum[x]=;
}
else {
swap(root[x],root[y]),swap(sum[x],sum[y]);
dfs(y,root[x]),root[x]=;ans-=sum[x],sum[x]=;
}
}
else printf("%d\n",ans);
}
return ;
}
P3201 [HNOI2009]梦幻布丁的更多相关文章
- 洛谷P3201 [HNOI2009]梦幻布丁 [链表,启发式合并]
题目传送门 梦幻布丁 题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输 ...
- 洛谷P3201 [HNOI2009]梦幻布丁(链表 + 启发式合并)
题目链接 给出 \(n\) 个布丁,每个补丁都有其颜色.现在有 \(m\) 次操作,每次操作将第 \(x_i\) 种颜色全部变为第 \(y_i\) 种颜色. 操作中可能会插入询问,回答目前总共有多少段 ...
- 洛谷P3201 [HNOI2009]梦幻布丁
题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输出格式 输入格式: 第 ...
- luogu P3201 [HNOI2009]梦幻布丁
传送门 先考虑暴力,显然每次是把一个位置集合和另一个集合合并,同时维护答案,合并的过程中如果两个集合每有一对元素相邻,答案就减1 优化暴力的话,说到合并,怎么能不想起启发式合并呢?每次把一个大小小的集 ...
- 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)
题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...
- bzoj 1483 [HNOI2009]梦幻布丁(链表+启发式合并)
1483: [HNOI2009]梦幻布丁 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1818 Solved: 761[Submit][Status ...
- BZOJ 1483: [HNOI2009]梦幻布丁( 链表 + 启发式合并 )
把相同颜色的串成一个链表, 然后每次A操作就启发式合并, 然后计算对答案的影响. ----------------------------------------------------------- ...
- BZOJ 1483: [HNOI2009]梦幻布丁 [链表启发式合并]
1483: [HNOI2009]梦幻布丁 题意:一个带颜色序列,一种颜色合并到另一种,询问有多少颜色段 一种颜色开一个链表,每次遍历小的合并到大的里,顺带维护答案 等等,合并方向有规定? 令col[x ...
- [HNOI2009] 梦幻布丁
[HNOI2009] 梦幻布丁 标签: 链表 题解 可以直接用链表启发式合并做. 合并的细节处理稍微有点麻烦. 假如需要变成另一种颜色的那个颜色的个数更多,那么就肯定不能直接合. 维护一个color数 ...
随机推荐
- day90
Vue项目简介 最终效果:Vue通过axios发请求给Django后台,Django返回数据给Vue 创建项目: 创建vue项目: -安装node.js -vue脚手架 -vue create 项目名 ...
- CF835F Roads in the Kingdom/UOJ126 NOI2013 快餐店 树的直径
传送门--CF 传送门--UOJ 题目要求基环树删掉环上的一条边得到的树的直径的最小值. 如果直接考虑删哪条边最优似乎不太可做,于是考虑另一种想法:枚举删掉的边并快速地求出当前的直径. 对于环上的点, ...
- C# 套接字编程:Scoket,我用Scoket做的C# Windows应用程序如下:
首先请允许我做一个截图: 以上,是我服务端设计 我们知道:服务器端口数最大可以有65535个,但是实际上常用的端口才几十个,由此可以看出未定义的端口相当多.因此,我们可以通过程序随机获取一个当前可用的 ...
- Luogu P3327 [SDOI2015]约数个数和
又是恶心的莫比乌斯反演,蒟蒻我又是一脸懵逼的被CXR dalao狂虐. 题目要求\(ans=\sum_{i=1}^n \sum_{j=1}^m d(ij)\),其中\(d(ij)\)表示数\(x\)的 ...
- [Oracle]In-Memory的Join Group 位于内存的何处?
In-Memory的Join Group 的数据字典位于内存的何处? 有客户问到,使用Oracle 的In-Memory功能时,如果用到了 Join Group,那么这些这些Join Group,位于 ...
- BodeAbp概述
BodeAbp框架基于github开源框架ASP.NET Boilerplate,abp项目地址:https://github.com/aspnetboilerplate/aspnetboilerpl ...
- WPF制作带明细的环形图表
效果 明细用Popup实现的,录gif时,Popup显示不出来,不知道为什么,所以静态图凑合看吧 大体思路 图表使用Arc+Popup实现 图表分为两部分,一是环形部分,一是标注的明细部分. 环形部分 ...
- Sql_索引分析
「索引就像书的目录, 通过书的目录就准确的定位到了书籍具体的内容」,这句话描述的非常正确, 但就像脱了裤子放屁,说了跟没说一样,通过目录查找书的内容自然是要比一页一页的翻书找来的快,同样使用的索引的人 ...
- .net 2.0 使用linq
.net 2.0 使用linq,主要是使用Linq to Object,没有测试Linq to XML. 方法: 新建一个net2.0的程序,然后添加对System.Core.Dll的引用.引用时vs ...
- Ubuntu apt-get提示被锁住
执行 apt-get 时提示资源被锁住 E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavai ...