codeforces500B
New Year Permutation
User ainta has a permutation p1, p2, ..., pn. As the New Year is coming, he wants to make his permutation as pretty as possible.
Permutation a1, a2, ..., an is prettier than permutation b1, b2, ..., bn, if and only if there exists an integer k (1 ≤ k ≤ n) where a1 = b1, a2 = b2, ..., ak - 1 = bk - 1 and ak < bkall holds.
As known, permutation p is so sensitive that it could be only modified by swapping two distinct elements. But swapping two elements is harder than you think. Given an n × n binary matrix A, user ainta can swap the values of pi and pj (1 ≤ i, j ≤ n, i ≠ j) if and only if Ai, j = 1.
Given the permutation p and the matrix A, user ainta wants to know the prettiest permutation that he can obtain.
Input
The first line contains an integer n (1 ≤ n ≤ 300) — the size of the permutation p.
The second line contains n space-separated integers p1, p2, ..., pn — the permutation p that user ainta has. Each integer between 1 and n occurs exactly once in the given permutation.
Next n lines describe the matrix A. The i-th line contains n characters '0' or '1' and describes the i-th row of A. The j-th character of the i-th line Ai, j is the element on the intersection of the i-th row and the j-th column of A. It is guaranteed that, for all integers i, j where 1 ≤ i < j ≤ n, Ai, j = Aj, i holds. Also, for all integers i where 1 ≤ i ≤ n, Ai, i = 0 holds.
Output
In the first and only line, print n space-separated integers, describing the prettiest permutation that can be obtained.
Examples
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
1 2 4 3 6 7 5
5
4 2 1 5 3
00100
00011
10010
01101
01010
1 2 3 4 5
Note
In the first sample, the swap needed to obtain the prettiest permutation is: (p1, p7).
In the second sample, the swaps needed to obtain the prettiest permutation is (p1, p3), (p4, p5), (p3, p4).
A permutation p is a sequence of integers p1, p2, ..., pn, consisting of n distinct positive integers, each of them doesn't exceed n. The i-th element of the permutation p is denoted as pi. The size of the permutation p is denoted as n.
sol:十分显然的是a可以与b换,b可以与c换,a就可以和c换,于是把可以换的用并查集缩成一个个连通块,在每个联通块中做到最优,那么就是答案了
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,a[N],Pos[N];
bool Bo[N][N];
int Father[N];
inline int Get_Father(int x)
{
return (Father[x]==x)?(x):(Father[x]=Get_Father(Father[x]));
}
struct Record
{
int Shuz,Weiz;
};
inline bool cmp_Shuz(Record p,Record q)
{
return p.Shuz<q.Shuz;
}
inline bool cmp_Weiz(Record p,Record q)
{
return p.Weiz<q.Weiz;
}
vector<Record>Liantong[N];
vector<int>Xulie[N];
int main()
{
int i,j;
R(n);
for(i=;i<=n;i++)
{
R(a[i]); Father[i]=i;
}
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
char ch=' ';
while(!isdigit(ch)) ch=getchar();
if(ch=='')
{
Father[Get_Father(i)]=Get_Father(j);
}
}
}
for(i=;i<=n;i++)
{
Liantong[Get_Father(i)].push_back((Record){a[i],i});
}
for(i=;i<=n;i++) if(Liantong[i].size())
{
sort(Liantong[i].begin(),Liantong[i].end(),cmp_Shuz);
for(j=;j<Liantong[i].size();j++) Xulie[i].push_back(Liantong[i][j].Shuz);
}
for(i=;i<=n;i++) if(Liantong[i].size())
{
sort(Liantong[i].begin(),Liantong[i].end(),cmp_Weiz);
for(j=;j<Liantong[i].size();j++) a[Liantong[i][j].Weiz]=Xulie[i][j];
}
for(i=;i<n;i++) W(a[i]); Wl(a[n]);
return ;
}
/*
input
7
5 2 4 3 6 7 1
0001001
0000000
0000010
1000001
0000000
0010000
1001000
output
1 2 4 3 6 7 5 input
5
4 2 1 5 3
00100
00011
10010
01101
01010
output
1 2 3 4 5
*/
codeforces500B的更多相关文章
随机推荐
- Omi-router实战 Sorrow.X的web简历
其实这篇文章,真的没啥写的. 主要是为了学以致用,使用了omi-router写了个,个人简历. 路由demo实战源码:https://github.com/SorrowX/resume_demo de ...
- Ubuntu 打包后安装提示:子进程 已安装 pre-removal 脚本 返回了错误号 1
子进程 已安装 pre-removal 脚本 返回了错误号 1或2 与 子进程 已安装 post-installation 脚本 返回了错误号 1或2 一.子进程 已安装 pre-removal ...
- Codeforces 999D Equalize the Remainders (set使用)
题目连接:Equalize the Remainders 题意:n个数字,对m取余有m种情况,使得每种情况的个数都为n/m个(保证n%m=0),最少需要操作多少次? 每次操作可以把某个数字+1.输出最 ...
- Java Web应用开发中的一些概念
最近在学习Java Web,发现Java Web的概念很多,而且各个概念之间的关系也挺复杂,本篇博客把这些关系总结于此,主要参考的博客附在文章末尾. 概念 服务器 服务器,硬件角度上说就是一台高性能的 ...
- BodeAbp服务端介绍
BodeAbp服务端只提供api,绝大部分api通过abp的动态WebApi机制提供,原理可以参考这篇文章:http://www.cnblogs.com/1zhk/p/5418694.html 与业务 ...
- CSS 内边距 (padding) 实例
CSS 内边距 (padding) 实例元素的内边距在边框和内容区之间.控制该区域最简单的属性是 padding 属性. CSS padding 属性定义元素边框与元素内容之间的空白区域.CSS 内边 ...
- 基本的排序算法C++实现(插入排序,选择排序,冒泡排序,归并排序,快速排序,最大堆排序,希尔排序)
博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/8529525.html特别不喜欢那些随便转载别人的原创文章又不给 ...
- PairWork-电梯调度程序结对编程【附加题】
1 接口改进 1) 之前判断电梯是否闲置的函数不太好理解,重新修改了,如下所示: //是否停顿状态(停止的以及开门间隔>=0) public bool IsIdle { get { return ...
- 结对项目——Core设计与实现
写在前面:关于结对编程 结对编程我一直认为是一种非常好的合作方式,他的形式主要是由一个人负责代码编写,另一个人则在一旁即时对写下的代码进行审查,这样可以大大减少代码实现方面的错误. 这次我的结对伙伴是 ...
- 《Linux内核分析》课程第八周学习总结
姓名:何伟钦 学号:20135223 ( *原创作品转载请注明出处*) ( 学习课程:<Linux内核分析>MOOC课程http://mooc.study.163.com/course/U ...