Tian Ji -- The Horse Racing

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)

Problem Description
Here is a famous story in Chinese history.
“That was about 2300 years ago. General Tian Ji was a high official in the country Qi. He likes to play horse racing with the king and others.”
“Both of Tian and the king have three horses in different classes, namely, regular, plus, and super. The rule is to have three rounds in a match; each of the horses must be used in one round. The winner of a single round takes two hundred silver dollars from the loser.”
“Being the most powerful man in the country, the king has so nice horses that in each class his horse is better than Tian’s. As a result, each time the king takes six hundred silver dollars from Tian.”
“Tian Ji was not happy about that, until he met Sun Bin, one of the most famous generals in Chinese history. Using a little trick due to Sun, Tian Ji brought home two hundred silver dollars and such a grace in the next match.”
“It was a rather simple trick. Using his regular class horse race against the super class from the king, they will certainly lose that round. But then his plus beat the king’s regular, and his super beat the king’s plus. What a simple trick. And how do you think of Tian Ji, the high ranked official in China?”
Were Tian Ji lives in nowadays, he will certainly laugh at himself. Even more, were he sitting in the ACM contest right now, he may discover that the horse racing problem can be simply viewed as finding the maximum matching in a bipartite graph. Draw Tian’s horses on one side, and the king’s horses on the other. Whenever one of Tian’s horses can beat one from the king, we draw an edge between them, meaning we wish to establish this pair. Then, the problem of winning as many rounds as possible is just to find the maximum matching in this graph. If there are ties, the problem becomes more complicated, he needs to assign weights 0, 1, or -1 to all the possible edges, and find a maximum weighted perfect matching…
However, the horse racing problem is a very special case of bipartite matching. The graph is decided by the speed of the horses — a vertex of higher speed always beat a vertex of lower speed. In this case, the weighted bipartite matching algorithm is a too advanced tool to deal with the problem.
In this problem, you are asked to write a program to solve this special case of matching problem.

Input
The input consists of up to 50 test cases. Each case starts with a positive integer n (n <= 1000) on the first line, which is the number of horses on each side. The next n integers on the second line are the speeds of Tian’s horses. Then the next n integers on the third line are the speeds of the king’s horses. The input ends with a line that has a single 0 after the last test case.

Output
For each input case, output a line containing a single number, which is the maximum money Tian Ji will get, in silver dollars.

Sample Input
3
92 83 71
95 87 74
2
20 20
20 20
2
20 19
22 18
0

Sample Output
200
0
0

Source
2004 Asia Regional Shanghai

原题链接

贪心策略

先对田忌、齐王的马按照速度分别排序。
对排序后的两组马的速度,按如下规则比较:

一、当前田忌最慢的马比齐王最慢的马要快,因为田忌任何马都能赢齐王的这匹最慢的马,就拿自己最慢的马来和齐王比,赢一局且实力损失最小。

二、当前田忌最慢的马比齐王最慢的马要慢,因为田忌最慢的马一定会输齐王任何的马,就拿这匹马和齐王最快的马比,输一局且消耗的齐王实力最大。

三、当前田忌最快的马比齐王最快的马要慢,因为田忌任何马都会输给齐王的这匹最快的马,就拿自己最慢的马来和齐王比,输一局且实力损失最小。

四、当前田忌最快的马比齐王最快的马要快,因为田忌最快的马和齐王的任何马比都会赢,就那这匹马和齐王最快的马比,赢一局且消耗的齐王实力最大。

一二和三四的比较顺序无所谓

五、头尾都相等时,用田忌最慢的马消耗齐王最快的马,出现两种情况:
- 1.齐王最快的马比田忌最慢的马快,输一局。
- 2.齐王最快的马与田忌最慢的马相等,平一局,此时所有马的速度都相等。

代码[c++]

#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int HOUSEN = 1005;
int main()
{
int n;
while(scanf("%d",&n)&&n!=0)
{
int tian[HOUSEN],king[HOUSEN];
for(int i=0; i<n; i++)
scanf("%d",tian+i);
for(int i=0; i<n; i++)
scanf("%d",king+i);
sort(tian,tian+n);
sort(king,king+n);
int tleft=0,tright=n-1;
int kleft=0,kright=n-1;
int win=0,lost=0;
while(tleft<=tright)
{
if(tian[tleft]>king[kleft])
{
win++;
tleft++;
kleft++;
}
else if(tian[tleft]<king[kleft])
{
lost++;
tleft++;
kright--;
}
else if(tian[tright]<king[kright])
{
lost++;
tleft++;
kright--;
}
else if(tian[tright]>king[kright])
{
win++;
tright--;
kright--;
}
else
{
if(tian[tleft]<king[kright])lost++;
tleft++;
kright--;
}
}
printf("%d\n",200*(win-lost));
}
return 0;
}

【贪心】[hdu1052]Tian Ji -- The Horse Racing(田忌赛马)[c++]的更多相关文章

  1. [HDU1052]Tian Ji -- The Horse Racing(田忌赛马)

    题目大意:田忌赛马问题,给出田忌和齐威王的马的数量$n$和每匹马的速度$v$,求田忌最多赢齐威王多少钱(赢一局得200,输一局扣200,平局不得不扣). 思路:贪心. 1.若田忌最慢的马可以战胜齐王最 ...

  2. hdu 1052 Tian Ji -- The Horse Racing (田忌赛马)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. hdu1052 Tian Ji -- The Horse Racing 馋

    转载请注明出处:http://blog.csdn.net/u012860063 题目链接:pid=1052">http://acm.hdu.edu.cn/showproblem.php ...

  4. HDU-1052 Tian Ji -- The Horse Racing 贪心 考虑特殊位置(首尾元素)的讨论

    题目链接:https://cn.vjudge.net/problem/HDU-1052 题意 田忌赛马问题扩展版 给n匹马,马的能力可以相同 问得分最大多少 思路 贪心做得还是太少,一开始一点思虑都没 ...

  5. 【OpenJ_Bailian - 2287】Tian Ji -- The Horse Racing (贪心)

    Tian Ji -- The Horse Racing 田忌赛马,还是English,要不是看题目,我都被原题整懵了,直接上Chinese吧 Descriptions: 田忌和齐王赛马,他们各有n匹马 ...

  6. hdoj 1052 Tian Ji -- The Horse Racing【田忌赛马】 【贪心】

    思路:先按从小到大排序, 然后从最快的開始比(如果i, j 是最慢的一端, flag1, flag2是最快的一端 ),田的最快的大于king的 则比較,如果等于然后推断,有三种情况: 一:大于则比較, ...

  7. HDU 1052:Tian Ji -- The Horse Racing(贪心)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536/32768 K (Jav ...

  8. HDU 1052 Tian Ji -- The Horse Racing【贪心在动态规划中的运用】

    算法分析: 这个问题很显然可以转化成一个二分图最佳匹配的问题.把田忌的马放左边,把齐王的马放右边.田忌的马A和齐王的B之间,如果田忌的马胜,则连一条权为200的边:如果平局,则连一条权为0的边:如果输 ...

  9. HDU 1052 Tian Ji -- The Horse Racing (贪心)(转载有修改)

    Tian Ji -- The Horse Racing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. (一)cygwin和vim——hello world!

    好吧,我现在初出茅庐,一无所有,只有一台win xp.做什么呢?要不要试试Unix命令行编程的感觉,想到就做.Just try! 1.首先安装cygwin,最好是选择离线安装包. 2.默认选择安装所有 ...

  2. Flink--基于mysql的sink和source

    基于mysql的source操作 object MysqlSource { def main(args: Array[String]): Unit = { val env = StreamExecut ...

  3. Python select解析

    一.首先列一下,sellect.poll.epoll三者的区别 1.select a.select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监控多个文件描述符的数组,当 ...

  4. 函数对象的call()、apply() 方法区别

    函数对象的call().apply() 方法 函数作为对象提供了call(),apply() 方法,他们也可以用来调用函数,这两个方法都接受一个对象作为参数,用来指定本次调用时函数中this的指向: ...

  5. {}动态规划}记忆化dp

    先搞个模板 #include<stdio.h> #include<string.h> using namespace std; typedef long long ll; ]; ...

  6. day5 列表的增删改查

    1,列表的增删改查,其他操作.2,元祖.3,列表的嵌套操作.4,开一点dict. 昨日内容回顾: 字符串的方法:1,find通过元素找索引,可切片,找不到返回-12,index,找不到报错.3,spl ...

  7. Python3.4+Django1.9+Bootstrap3

    实现和原理 Python集成Django开发框架后,可以通过在cmd命令提示符下建立工程,工程名为learn_models 1 django-admin.py startproject learn_m ...

  8. JavaEE 之 DBCP

    1.DBCP a.定义:DBCP(DataBase Connection Pool)数据库连接池,是java数据库连接池的一种,由Apache开发,通过数据库连接池,可以让程序自动管理数据库连接的释放 ...

  9. java中path和CLASSPATH的配置和意义解析

    原文链接 https://blog.csdn.net/eclipse_yin/article/details/51447169 一.JDK的安装和基本配置 JDK的安装: 1) 如果想要获得JDK,那 ...

  10. Django分页(二)

    Django分页(二) 要求 .设定每页显示数据条数 # # .用户输入页码(第一页.第二页...) # # .设定显示多少页号 # # .获取当前数据总条数 # # .根据设定显示多少页号和数据总条 ...