【Luogu4931】情侣?给我烧了! 加强版(组合计数)

题面

洛谷

题解

戳这里

忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 5000010
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,k,f[MAX],jc[MAX],jv[MAX],inv[MAX],bin[MAX];
int C(int n,int m){return 1ll*jc[n]*jv[m]%MOD*jv[n-m]%MOD;}
int main()
{
int T=read();jc[0]=jv[0]=inv[0]=inv[1]=f[0]=bin[0]=1;
for(int i=1;i<MAX;++i)f[i]=2ll*(i-1)*(f[i-1]+f[i-2])%MOD;
for(int i=2;i<MAX;++i)inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<MAX;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=1;i<MAX;++i)jv[i]=1ll*jv[i-1]*inv[i]%MOD;
for(int i=1;i<MAX;++i)bin[i]=2ll*bin[i-1]%MOD;
while(T--)
{
n=read();k=read();
printf("%lld\n",1ll*bin[n]*C(n,k)%MOD*C(n,k)%MOD*jc[n-k]%MOD*jc[k]%MOD*f[n-k]%MOD);
}
return 0;
}

【Luogu4931】情侣?给我烧了! 加强版(组合计数)的更多相关文章

  1. 【Luogu4921】情侣?给我烧了!(组合计数)

    [Luogu4921]情侣?给我烧了!(组合计数) 题面 洛谷 题解 很有意思的一道题目. 直接容斥?怎么样都要一个平方复杂度了. 既然是恰好\(k\)对,那么我们直接来做: 首先枚举\(k\)对人出 ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  6. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  7. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  8. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  9. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

随机推荐

  1. 【译】快速起步-JSX简介

    react version: 15.5.0 快速起步-JSX简介 思考这个变量申明: const element = <h1>Hello, world!</h1>; 这个有趣的 ...

  2. 在python中使用正则表达式(一)

    在python中通过内置的re库来使用正则表达式,它提供了所有正则表达式的功能. 一.写在前面:关于转义的问题 正则表达式中用“\”表示转义,而python中也用“\”表示转义,当遇到特殊字符需要转义 ...

  3. 针对负载均衡集群中的session解决方案的总结

    在日常运维工作中,当给Web站点使用负载均衡之后,必须面临的一个重要问题就是Session的处理办法,无论是PHP.Python.Ruby还是Java语言环境,只要使用服务器保存Session,在做负 ...

  4. M2阶段事后总结报告

    会议照片: 设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 开发一个快捷方便的记事本App.从用户体验角度出发,在一般记事本App的基础上进行创新 ...

  5. 第六周分析Linux内核创建一个新进程的过程

    潘恒 原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 task_struct结构: ...

  6. 毕业设计 之 五 PHP语法学习笔记

    毕业设计 之 四 PHP语法学习笔记 作者:20135216 平台:windows10 软件:XAMPP,DreamWeaver 说明:该笔记是对网站编程语言的详细学习 一.PHP基础 0. 关于环境 ...

  7. K 班前7次作业成绩汇总

    K 班前7次作业成绩汇总 得分榜 千帆竞发 详细 短学号 名 1 2 3 4 5 6 7 TOTAL 505 基智 4.55 1 -2 0 0 -10 4.37 -2.08 414 圳源 5.43 2 ...

  8. 分布式版本控制系统Git的安装与使用(作业2)

    (本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103) 分布式版本控制系统Git的安装与使用 一.安装Git b ...

  9. 注解Annotation

    @java.lang.annotation.Target(value={java.lang.annotation.ElementType.TYPE}) @java.lang.annotation.Re ...

  10. 文件系统的block 数据库中的block 以及内存中的page基础知识汇总(自己理解 可能有误)

    1. 操作系统文件系统中的的block 文件系统中的block 是文件系统最小的读写单元,在HDD的磁盘时代, 一般block的大小可能与磁盘的扇区大小一致为 512bytes 也因为这个原因MBR启 ...