BZOJ 4552 [Tjoi2016&Heoi2016]排序 | 二分答案 线段树
题目链接
题面
题目描述
在2016年,佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他。这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排序分为两种:
1:(0,l,r)表示将区间[l,r]的数字升序排序
2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q位置上的数字。输入输出格式
输入格式:
输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。
1 <= n, m <= 10^5第二行为n个整数,表示1到n的一个全排列。接下来输入m行,每一行有三个整数op, l, r, op为0代表升序排序,op为1代表降序排序, l, r 表示排序的区间。
最后输入一个整数q,q表示排序完之后询问的位置, 1 <= q <= n。1 <= n <= 10^5,1 <= m <= 10^5输出格式:
输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。
题解
这道题好有趣 = =
正解居然是二分答案!
因为最后要询问的只有一个位置,所以直接二分这个位置上的数。
然后修改一下原数组——原数组中比二分的答案大的数都改为1, 小于等于的都改为0。
然后用线段树模拟整个排序过程。把一个01序列的区间排序是很简单的——数出区间内有多少个1, 然后(如果是顺序排序)把右面对应的几个改成1, 剩下的改成0。
模拟执行一遍之后就可以知道实际上排完序后询问位置上的数应该比你二分的答案大还是小了,继续二分即可。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <vector>
#define space putchar(' ')
#define enter putchar('\n')
typedef long long ll;
using namespace std;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005;
int n, m, a[N], val[N], pos, op[N], ql[N], qr[N];
int data[4*N];
bool lazy[4*N], tag[4*N];
void build(int k, int l, int r){
tag[k] = 0;
if(l == r) return (void)(data[k] = val[l]);
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
data[k] = data[k << 1] + data[k << 1 | 1];
}
void pushdown(int k, int l, int r){
if(!tag[k]) return;
int mid = (l + r) >> 1;
data[k << 1] = lazy[k] * (mid - l + 1);
data[k << 1 | 1] = lazy[k] * (r - mid);
lazy[k << 1] = lazy[k << 1 | 1] = lazy[k];
tag[k << 1] = tag[k << 1 | 1] = 1;
tag[k] = 0;
}
void change(int k, int l, int r, int ql, int qr, int x){
if(ql <= l && qr >= r) return (void)(data[k] = x * (r - l + 1), lazy[k] = x, tag[k] = 1);
pushdown(k, l, r);
int mid = (l + r) >> 1;
if(ql <= mid) change(k << 1, l, mid, ql, qr, x);
if(qr > mid) change(k << 1 | 1, mid + 1, r, ql, qr, x);
data[k] = data[k << 1] + data[k << 1 | 1];
}
int query(int k, int l, int r, int ql, int qr){
if(ql <= l && qr >= r) return data[k];
pushdown(k, l, r);
int mid = (l + r) >> 1, ret = 0;
if(ql <= mid) ret += query(k << 1, l, mid, ql, qr);
if(qr > mid) ret += query(k << 1 | 1, mid + 1, r, ql, qr);
return ret;
}
int main(){
read(n), read(m);
for(int i = 1; i <= n; i++) read(a[i]);
for(int i = 1; i <= m; i++)
read(op[i]), read(ql[i]), read(qr[i]);
read(pos);
int l = 1, r = n, mid;
while(l < r){
mid = (l + r) >> 1;
for(int i = 1; i <= n; i++)
val[i] = a[i] > mid;
build(1, 1, n);
for(int i = 1; i <= m; i++){
int cnt = query(1, 1, n, ql[i], qr[i]);
if(op[i]){
if(cnt) change(1, 1, n, ql[i], ql[i] + cnt - 1, 1);
if(ql[i] + cnt <= qr[i]) change(1, 1, n, ql[i] + cnt, qr[i], 0);
}
else{
if(cnt) change(1, 1, n, qr[i] - cnt + 1, qr[i], 1);
if(qr[i] - cnt >= ql[i]) change(1, 1, n, ql[i], qr[i] - cnt, 0);
}
}
if(query(1, 1, n, pos, pos)) l = mid + 1;
else r = mid;
}
write(l), enter;
return 0;
}
BZOJ 4552 [Tjoi2016&Heoi2016]排序 | 二分答案 线段树的更多相关文章
- bzoj 4552 [Tjoi2016&Heoi2016]排序 (二分答案 线段树)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 题意: 给你一个1-n的全排列,m次操作,操作由两种:1.将[l,r]升序排序,2 ...
- [BZOJ4552][TJOI2016&&HEOI2016]排序(二分答案+线段树/线段树分裂与合并)
解法一:二分答案+线段树 首先我们知道,对于一个01序列排序,用线段树维护的话可以做到单次排序复杂度仅为log级别. 这道题只有一个询问,所以离线没有意义,而一个询问让我们很自然的想到二分答案.先二分 ...
- bzoj 4552 [Tjoi2016&Heoi2016]排序——二分答案
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案,把 >= mid 的设成1.< mid 的设成0,之后排序就变成 ...
- bzoj 4552: [Tjoi2016&Heoi2016]排序——二分+线段树
Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...
- BZOJ 4552: [Tjoi2016&Heoi2016]排序
4552: [Tjoi2016&Heoi2016]排序 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 579 Solved: 322[Sub ...
- BZOJ 4552 [Tjoi2016&Heoi2016]排序 ——线段树 二分答案
听说是BC原题. 好题,二分答案变成01序列,就可以方便的用线段树维护了. 然后就是区间查询和覆盖了. #include <map> #include <cmath> #inc ...
- BZOJ 4552: [Tjoi2016&Heoi2016]排序 线段树 二分
目录 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 update 10.6 此代码是个假代码,只能糊弄luogu,以后再改,路过大佬也可以帮一下辣 /* //fang zhi ...
- bzoj 4552: [Tjoi2016&Heoi2016]排序【二分+线段树】
二分值mid,然后把>=mid的赋值为1,其他赋值为0,每次排序就是算出区间内01的个数,然后分别把0和1放到连续的一段内,这些都可以用线段树来维护 二分的判断条件是操作完之后q位置上是否为1 ...
- BZOJ 4552 [Tjoi2016&Heoi2016]排序 线段树的分裂和合并
https://www.lydsy.com/JudgeOnline/problem.php?id=4552 https://blog.csdn.net/zawedx/article/details/5 ...
随机推荐
- Codeforces 996E Leaving the Bar (随机化)
题目连接:Leaving the Bar 题意:给你n个向量,你可以加这个向量或减这个向量,使得这些向量之和的长度小于1.5e6. 题解: 按照正常的贪心方法,最后的结果有可能大于1.5e6 .这里我 ...
- Windows环境下实现Consul服务注册和服务发现
1.首先从官方网站下载Consul,因为我们是使用的Windows系统,所以选择windows版本 https://www.consul.io/downloads.html 2.可以用开发者模式来启动 ...
- Linux-C-Program:makefile
注:本文参照博客:https://blog.csdn.net/initphp/article/details/7692923 1. 概述2. 示例说明2.1 无makefile编译2.2 有makef ...
- db2修改最大连接数
查看当前连接数,sample为数据库名db2 list applications for db sample db2 list applications for db sample show deta ...
- 第六周-总结&结对编程
1.结对编程 结对编程的Partner依旧是郑蕊师姐(博客:http://www.cnblogs.com/zhengrui0452/) 我们一起改进的是郑蕊师姐做的“四则运算” 郑蕊师姐之前完成四则运 ...
- Individual Project - Word_frequency
0x00 预先准备和时间规划 1.因为要用到visual studio 2013,准备学习C#,预计一天时间能基本使用. 3.了解需求并设计基本数据结构与大致流程 20min 2.根据提议实现simp ...
- Linux内核分析第三章读书笔记
第三章 进程管理 3.1 进程 进程就是处于执行期的程序 进程就是正在执行的程序代码的实时结果 线程:在进程中活动的对象.每个线程都拥有一个独立的程序计数器.进程栈和一组进程寄存器. 内核调度的对象是 ...
- Linux内核分析第四章 读书笔记
Linux内核分析第四章 读书笔记 第一部分--进程调度 进程调度:操作系统规定下的进程选取模式 面临问题:多任务选择问题 多任务操作系统就是能同时并发地交互执行多个进程的操作系统,在单处理器机器上这 ...
- Windows下面dir 总是输入成ls的一个解决方法
转帖:http://blog.csdn.net/venusic/article/details/50543058 新建一个ls.bat文件 输入 @echo off dir 然后放到环境变量存在的一个 ...
- 设计模式之工厂模式(c++)
问题描述 在面向对象系统设计中经常可以遇到以下的两类问题:1)为了提高内聚(Cohesion)和松耦合(Coupling),我们经常会抽象出一些类的公共接口以形成抽象基类或者接口.这样我们可以通过声明 ...