[JSOI2010] 连通数
Description

Input
输入数据第一行是图顶点的数量,一个正整数N。 接下来N行,每行N个字符。第i行第j列的1表示顶点i到j有边,0则表示无边。
Output
输出一行一个整数,表示该图的连通数。
HINT
对于100%的数据,N不超过2000。
Solution
\(Tarjan\) 缩点 \(+\) 拓扑排序 \(+\) \(bitset\) 优化状压
显然对于每个强联通分量我们都要求出在新图上它能到达哪些点。
如何求呢?
法一: \(dfs\),对于每个强联通分量找一下它连出去的边能到达哪些联通块,统计答案即可。复杂度 \(O(n^2)\)。(只是口胡一下没有写这种方法如果写不出来别找我)
法二:我们定义数组 \(f[i][j]\) 表示能否从第 \(i\) 个连通分量到达第 \(j\) 个连通分量。因为值只能为 \(0/1\),我们用 \(bitset\) 来状压第二维。因为 \(f[j]=or(f[i]),j\;can\;go\;to\;i\),所以我们在新图上建立一张反图,拓扑排序,按照拓扑序即可求出每个点能到达哪些点。 复杂度 \(O(n^2/32)\)。
Code
#include<queue>
#include<bitset>
#include<cstdio>
#include<cctype>
#include<iostream>
#define N 2005
#define min(A,B) ((A)<(B)?(A):(B))
int ans;
char ch[N];
bool in[N];
int n,cnt,sum,tot;
int dfn[N],low[N];
std::bitset<N> f[N];
std::queue<int> topo;
int belong[N],deg[N];
int head[N],head2[N];
int stk[N],top,sze[N];
struct Edge{
int to,nxt;
}edge[N*N],edge2[N*N];
void add(int x,int y){
edge[++cnt].to=y;
edge[cnt].nxt=head[x];
head[x]=cnt;
}
void add2(int x,int y){
edge2[++cnt].to=y;
edge2[cnt].nxt=head2[x];
head2[x]=cnt;
}
int getint(){
int x=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return x;
}
void tarjan(int now){
dfn[now]=low[now]=++sum;
stk[++top]=now;in[now]=1;
for(int i=head[now];i;i=edge[i].nxt){
int to=edge[i].to;
if(!dfn[to]){
tarjan(to);
low[now]=min(low[now],low[to]);
}
else if(in[to])
low[now]=min(low[now],dfn[to]);
}
if(low[now]==dfn[now]){
int y; tot++;
do{
y=stk[top--];
belong[y]=tot;
sze[tot]++;
in[y]=0;
}while(y!=now);
}
}
signed main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%s",ch);
for(int j=0;j<n;j++){
if(ch[j]=='0') continue;
add(i,j+1);
}
}
cnt=0;
for(int i=1;i<=n;i++){
if(!dfn[i])
tarjan(i);
}
for(int x=1;x<=n;x++){
for(int i=head[x];i;i=edge[i].nxt){
int to=edge[i].to;
if(belong[x]==belong[to]) continue;
deg[belong[x]]++;
add2(belong[to],belong[x]);
}
}
for(int i=1;i<=tot;i++)
f[i][i]=1;
for(int i=1;i<=tot;i++){
if(!deg[i])
topo.push(i);
}
while(topo.size()){
int u=topo.front();topo.pop();
for(int i=head2[u];i;i=edge2[i].nxt){
int to=edge2[i].to;
deg[to]--;
f[to]|=f[u];
if(!deg[to])
topo.push(to);
}
}
for(int i=1;i<=tot;i++){
for(int j=1;j<=tot;j++){
if(f[i][j])
ans+=sze[i]*sze[j];
}
}
printf("%d\n",ans);
return 0;
}
[JSOI2010] 连通数的更多相关文章
- BZOJ 2208: [Jsoi2010]连通数 tarjan bitset
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- bzoj2208:[Jsoi2010]连通数
http://blog.csdn.net/u013598409/article/details/47037499 里面似乎有生成数据的... //我本来的想法是tarjan缩点之后然后将图遍历一遍就可 ...
- bzoj2208 [Jsoi2010]连通数(scc+bitset)
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1879 Solved: 778[Submit][Status ...
- BZOJ 2208: [Jsoi2010]连通数( DFS )
n只有2000,直接DFS就可以过了... -------------------------------------------------------------------------- #in ...
- 2208: [Jsoi2010]连通数
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1371 Solved: 557[Submit][Status ...
- bzoj 2208 [Jsoi2010]连通数
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 输入数据第一行是图顶点的数量,一个正整数N ...
- 【BZOJ2208】[JSOI2010]连通数(Tarjan)
[BZOJ2208][JSOI2010]连通数(Tarjan) 题面 BZOJ 洛谷 题解 先吐槽辣鸡洛谷数据,我写了个\(O(nm)\)的都过了. #include<iostream> ...
- 【BZOJ2208】[Jsoi2010]连通数 DFS
[BZOJ2208][Jsoi2010]连通数 Description Input 输入数据第一行是图顶点的数量,一个正整数N. 接下来N行,每行N个字符.第i行第j列的1表示顶点i到j有边,0则表示 ...
- 【bzoj2208】[Jsoi2010]连通数
2208: [Jsoi2010]连通数 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2305 Solved: 989[Submit][Status ...
- 暴力【bzoj2208】: [Jsoi2010]连通数
2208: [Jsoi2010]连通数 暴力过的. 没脸说... 正解好像是缩点+递推. 应该也不难写. code: #include <iostream> #include <cs ...
随机推荐
- 【转】背后的故事之 - 快乐的Lambda表达式(一)
快乐的Lambda表达式(二) 自从Lambda随.NET Framework3.5出现在.NET开发者眼前以来,它已经给我们带来了太多的欣喜.它优雅,对开发者更友好,能提高开发效率,天啊!它还有可能 ...
- idea配置servlet记录,tmocat当服务器,学习
没整理图片,将就看吧, Mac10.11.6 idea2018.1.3 servlet+tmocat9 遇到问题: 端口错误 java.rmi.server.ExportException: Port ...
- js中加“var”和不加“var”的区别
JavaScript 拥有动态类型.这意味着相同的变量可用作不同的类型: var x // x 为 undefined var x = 6; // x 为数字 var x = "Bill&q ...
- Codeforces Round #547 (Div. 3) G 贪心
https://codeforces.com/contest/1141/problem/G 题意 在一棵有n个点的树上给边染色,连在同一个点上的边颜色不能相同,除非舍弃掉这个点,问最少需要多少种颜色来 ...
- drf2 FBV和CBV
FBV 基于函数的视图 CBV 基于类的视图 也就是说我们是用函数编写视图~还是类编写视图 urlpatterns = [ path('admin/', admin.site.urls), path( ...
- hive 命令行传入参数
azkban实现任务重跑 我们执行sql的方式是将hql文件上传到服务器本地.然后执行shell命令 hive " -f ./test_scheduler.hql 注:hive -e 是执行 ...
- 7.AOP编程
注解和xml混合使用 1.将所有的bean都配置xml中 <bean id="" class=""> 2.将所有的依赖都使用注解 @Autowire ...
- eclipse经常出现——未响应!!!
现象:启动eclipse缓慢,启动完成经常出现未响应情况.偶然在打开一个项目时候,也出现未响应. 原因:虚拟内存不足,或者电脑本身内存不足.但是目前绝大多数PC而言,内存应该是充足的,因此可以修改虚拟 ...
- 2018.09.22 上海大学技术分享 - An Introduction To Go Programming Language
老实说笔者学习 Go 的时间并不长,积淀也不深厚,这次因缘巧合,同组的同事以前是上海大学的开源社区推动者之一,同时我们也抱着部分宣传公司和技术分享的意图,更进一步的,也是对所学做一个总结,所以拟定了这 ...
- Rgb2Gray
GPU上运行的函数又称为Kernel,用__global__修饰 调用Kernel函数时,用FunctionCall<<<block_shape, thread_shape, int ...