Description

题库链接

给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 \(S\) 有多少个子集的异或为一个连通图。

\(1\leq n\leq 10,1\leq s\leq 60\)

Solution

不妨记 \(f_x\) 为连通块个数至少为 \(x\) 的方案数, \(g_x\) 为连通块恰好为 \(x\) 的方案数。

容易得到:

\[f_x=\sum_{i=x}^n\begin{Bmatrix}i\\x\end{Bmatrix}g_i\]

其中第二类斯特林数的含义是将 \(i\) 个连通块塞成 \(x\) 个的方案数。至于为什么要塞成 \(x\) 个,这和 \(f\) 的计算方式有关,之后会提到。

那么由斯特林反演

\[g_x=\sum_{i=x}^n(-1)^{i-x}\begin{bmatrix}i\\x\end{bmatrix}f_i\]

那么

\[\begin{aligned}g_1&=\sum_{i=1}^n(-1)^{i-1}\begin{bmatrix}i\\1\end{bmatrix}f_i\\&=\sum_{i=1}^n(-1)^{i-1}(i-1)!f_i\end{aligned}\]

考虑如何求 \(f\) ,我们可以去枚举子集划分,对于横跨两个集合的边,我们必须让他们异或为 \(0\) ,集合内的边可以随意连,我们不用管(这样可能会导致集合内不连通,这就是上面第二类斯特林数的含义)。

这样我们可以用 \(O(bell(n))\) 的时间枚举子集划分。然后对于每一个划分,用线性基找出边集的极大线性无关组个数,记为 \(tot\) ,那么在当前集合划分下方案为 \(2^{s-tot}\) 。

总复杂度 \(O(bell(n)s\frac{n(n-1)}{2})\) 。

Code

#include <bits/stdc++.h>
#define ll long long
using namespace std; char ch[120];
ll t, x, bin[64], fac[64], ans, base[64], mp[64];
int s, n, belong[64]; void cal(int sz) {
t = 0; int cnt = 0;
for (int i = 0; i < 64; i++) base[i] = 0;
for (int i = 1, l = -1; i <= n; i++)
for (int j = i+1; j <= n; j++)
t |= bin[++l]*(belong[i] != belong[j]);
for (int j = 1; j <= s; j++) {
x = t&mp[j];
for (int i = 63; i >= 0; i--)
if (x&bin[i]) {
if (!base[i]) {base[i] = x; ++cnt; break; }
else x ^= base[i];
}
}
if (sz&1) ans += fac[sz-1]*bin[s-cnt];
else ans -= fac[sz-1]*bin[s-cnt];
}
void dfs(int x, int sz) {
if (x > n) {cal(sz); return; }
for (int i = 1; i <= sz+1; i++)
belong[x] = i, dfs(x+1, sz+(i == sz+1));
}
void work() {
scanf("%d", &s); bin[0] = fac[0] = 1;
for (int i = 1; i <= 10; i++) fac[i] = 1ll*fac[i-1]*i;
for (int i = 1; i < 64; i++) bin[i] = bin[i-1]<<1;
scanf("%s", ch+1);
for (int len = strlen(ch+1); n*(n-1)/2 < len; ++n);
for (int i = 1, t = 0; i <= n; i++)
for (int j = i+1; j <= n; j++)
if (ch[++t] == '1') mp[1] |= bin[t-1];
for (int T = 2; T <= s; T++) {
scanf("%s", ch+1);
for (int i = 1, t = 0; i <= n; i++)
for (int j = i+1; j <= n; j++)
if (ch[++t] == '1') mp[T] |= bin[t-1];
}
dfs(1, 0); printf("%lld\n", ans);
}
int main() {work(); return 0; }

[BZOJ 4671]异或图的更多相关文章

  1. BZOJ 4671 异或图 | 线性基 容斥 DFS

    题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中 ...

  2. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  3. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  4. 【BZOJ】4671: 异或图

    题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m ...

  5. 【BZOJ4671】异或图(斯特林反演)

    [BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出 ...

  6. bzoj4671 异或图(斯特林反演,线性基)

    bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ ...

  7. bzoj4671: 异或图——斯特林反演

    [BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办 ...

  8. 【XSY2701】异或图 线性基 容斥原理

    题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...

  9. bzoj4671: 异或图

    bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 ( ...

随机推荐

  1. web版ssh的使用

    一.web_ssh版本安装使用 web_ssh源码:https://github.com/shellinabox/shellinabox 1)安装依赖包 yum install git openssl ...

  2. Docker基础-使用Dockerfile创建镜像

    1.基本结构 Dockerfile由一行行命令语句组成,并支持以#开头的注释行.例如: # This dockerfile uses the ubuntu image # VERSION 2 - ED ...

  3. 2.DI依赖注入

    一:DI Dependency Injection ,依赖注入 is a :是一个,继承. has a:有一个,成员变量,依赖. class B { private A a;   //B类依赖A类 } ...

  4. Android开发 - Retrofit 2 使用自签名的HTTPS证书进行API请求

    为了确保数据传输的安全,现在越来越多的应用使用Https的方式来进行数据传输,使用https有很多有点,比如: HTTPS协议是由SSL+HTTP协议构建的可进行加密传输.身份认证的网络协议,要比ht ...

  5. 如何用impress.js写有逼格的ppt

    概述 这是我学习课程impress让你的内容"舞"起来而做的总结和练手. 你可以点这里在线预览我做的ppt 注意:等加载完了之后,点击空格键翻页! 简化模板 下面是一个简化的模板 ...

  6. Ideas

    1.蔬菜店,自带种植的菜地.(实现蔬菜都是新采摘的.) 这个试用于农村,因为需要土地.农村现在蔬菜店大多也是外出进货.有些菜放久了,就坏掉了. 这里有问题就是,(1).如果销量不够,怎么让蔬菜不烂在菜 ...

  7. 机器学习技法笔记:02 Dual Support Vector Machine

    Roadmap Motivation of Dual SVM Lagrange Dual SVM Solving Dual SVM Messages behind Dual SVM Summary

  8. cracking the coding interview系列C#实现

    原版内容转自:CTCI面试系列——谷歌面试官经典作品 | 快课网 此系列为C#实现版本 谷歌面试官经典作品(CTCI)目录   1.1 判断一个字符串中的字符是否唯一 1.2 字符串翻转 1.3 去除 ...

  9. Keras 资源

    Keras中文文档 github Keras example 官方博客 A ten-minute introduction to sequence-to-sequence learning in Ke ...

  10. 【2019北京集训测试赛(十三)】数据(sj) 冷静分析

    题目大意:给你一个代表区间$[1,n]$的线段树,问你随机访问区间$[1,n]$中的一个子区间,覆盖到的线段树节点个数的期望(需要乘上$\frac{n(n-1)}{2}$后输出). 数据范围:$n≤1 ...