poly->compacted RLE:

    seg=np.array([312.29, 562.89, 402.25, 511.49, 400.96, 425.38, 398.39, 372.69, 388.11, 332.85, 318.71, 325.14, 295.58, 305.86, 269.88, 314.86, 258.31, 337.99, 217.19, 321.29, 182.49, 343.13, 141.37, 348.27, 132.37, 358.55, 159.36, 377.83, 116.95, 421.53, 167.07, 499.92, 232.61, 560.32, 300.72, 571.89])
    compactedRLE = maskutil.frPyObjects([seg], 768, 768)
    print(compactedRLE)

compacted(compressed) RLE->mask:

    mask = maskutil.decode(compactedRLE)
    mask=np.reshape(mask,(768,768))
    mask[:,:]=mask[:,:]*255
    print(mask)
    #mmcv.imshow(mask)

mask-> polygon / RLE:

def close_contour(contour):
    if not np.array_equal(contour[0], contour[-1]):
        contour = np.vstack((contour, contour[0]))
    return contour

def binary_mask_to_polygon(binary_mask, tolerance=0):
    """Converts a binary mask to COCO polygon representation
    Args:
    binary_mask: a 2D binary numpy array where '1's represent the object
    tolerance: Maximum distance from original points of polygon to approximated
    polygonal chain. If tolerance is 0, the original coordinate array is returned.
    """

polygons = []
    # pad mask to close contours of shapes which start and end at an edge
    padded_binary_mask = np.pad(binary_mask, pad_width=1, mode='constant', constant_values=0)
    contours = measure.find_contours(padded_binary_mask, 0.5)
    contours = np.subtract(contours, 1)
    for contour in contours:
        contour = close_contour(contour)
        contour = measure.approximate_polygon(contour, tolerance)
        if len(contour) < 3:
            continue
        contour = np.flip(contour, axis=1)
        segmentation = contour.ravel().tolist()
        # after padding and subtracting 1 we may get -0.5 points in our segmentation
        segmentation = [0 if i < 0 else i for i in segmentation]
        polygons.append(segmentation)

return polygons

def binary_mask_to_rle(binary_mask):
    rle = {'counts': [], 'size': list(binary_mask.shape)}
    counts = rle.get('counts')
    for i, (value, elements) in enumerate(groupby(binary_mask.ravel(order='F'))):
        if i == 0 and value == 1:
            counts.append(0)
        counts.append(len(list(elements)))
    return rle

 

def main():

mask=np.array(
        [
            [0, 0, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 1, 0, 0, 1, 0],
            [0, 0, 1, 1, 1, 1, 1, 0],
            [0, 0, 1, 1, 1, 1, 1, 0],
            [0, 0, 1, 1, 1, 1, 1, 0],
            [0, 0, 1, 0, 0, 0, 1, 0],
            [0, 0, 1, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 0, 0, 0]
        ]
    )
    print(mask)

poly=binary_mask_to_polygon(mask)

print(poly)

    rle=binary_mask_to_rle(mask)

    print(rle)

COCO数据集格式互换的更多相关文章

  1. Pascal VOC & COCO数据集介绍 & 转换

    目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...

  2. COCO 数据集的使用

    Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...

  3. COCO数据集深入理解

    TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...

  4. 在ubuntu1604上使用aria2下载coco数据集效率非常高

    简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...

  5. MS coco数据集下载

    2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...

  6. coco数据集标注图转为二值图python(附代码)

    coco数据集大概有8w张以上的图片,而且每幅图都有精确的边缘mask标注. 后面后分享一个labelme标注的json或xml格式转二值图的源码(以备以后使用) 而我现在在研究显著性目标检测,需要的 ...

  7. COCO数据集使用

    一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...

  8. 目标检测coco数据集点滴介绍

    目标检测coco数据集点滴介绍 1.  COCO数据集介绍 MS COCO 是google 开源的大型数据集, 分为目标检测.分割.关键点检测三大任务, 数据集主要由图片和json 标签文件组成. c ...

  9. 球形环境映射之angular与latlong格式互换

    这么做只是纯好奇,因为这种格式互换在实际中是没有意义的,下面映射方式互换的贴图说明了一切. 刚开始打算使用matlab进行贴图映射方式的转换,但许久不用很是生疏,而且生成图片要考虑很多事情,尤其是生成 ...

随机推荐

  1. Android application 和 activity 标签详解

    extends:http://blog.csdn.net/self_study/article/details/54020909 Application 标签 android:allowTaskRep ...

  2. django-registration

    快速开始指南 在安装django-registration之前,你需要先安装Django.django-registration 0.8需要Django1.1或更新版本的支持. Django进一步的信 ...

  3. c++学习计划

    我选择的课程是西北工业大学的<C++程序设计> 理由是:西北工业大学的计算机挺不错的,而且这门课程还有"国家精品"的认证,感觉应该挺不错的. 共48讲...有点多 从2 ...

  4. 微信小程序本地的域名“不在以下request合法域名列表中”错误处理方法

  5. 31、cookie小test

    请尽量使用JQuery进行代码编写,需求如下: 1.  页面初始化样式如图 2. 顶部input框中输入内容,按下回车enter键后,“正在进行” 列表中加入该条内容.   3. 顶部input框中输 ...

  6. Linux在终端命令行模式下智能补全功能以及组合键

    linux命令行下也有很多热键(快捷键).先来看看tab键 1.如果想看看linux下以c开头的命令可直接在命令行下敲入c然后连续敲两次tab,再选择y,会显示所有以c开头的命令. 2.涉及到文件时, ...

  7. mybatis主键的生成

    <?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE mapperPUBLIC "-// ...

  8. ubuntu 16.04 安装和配置vncserver

    https://www.linode.com/docs/applications/remote-desktop/install-vnc-on-ubuntu-16-04/#connect-to-vnc- ...

  9. CRM项目自定义的知识点

    python manage.py shell #自动配置环境 a = models.CustomerInfo #实例对象可以a._meta # dir 可以查看字段方法 a._meta.app_lab ...

  10. Jedis连接 HelloWorld实现

    建一个Maven项目, pom里加下jedis依赖, <dependency> <groupId>redis.clients</groupId> <artif ...