▶ 第四章,逐步优化了一个三维卷积计算的过程

● 基准代码

 #include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>
#include <omp.h>
#include <assert.h>
#include <sys/mman.h> #define REAL float
#define NX (64) #ifndef M_PI
#define M_PI (3.1415926535897932384626)
#endif // 初始化格点矩阵
void init(REAL *buff, const int nx, const int ny, const int nz, const REAL kx, const REAL ky, const REAL kz,
const REAL dx, const REAL dy, const REAL dz, const REAL kappa, const REAL time)
{
REAL ax = exp(-kappa * time*(kx*kx)), ay = exp(-kappa * time*(ky*ky)), az = exp(-kappa * time*(kz*kz));
for (int jz = ; jz < nz; jz++)
{
for (int jy = ; jy < ny; jy++)
{
for (int jx = ; jx < nx; jx++)
{
int j = (jz * ny + jy) * NX + jx;
REAL x = dx * ((REAL)(jx + 0.5)), y = dy * ((REAL)(jy + 0.5)), z = dz * ((REAL)(jz + 0.5));
buff[j] = (REAL)0.125*(1.0 - ax * cos(kx * x))*(1.0 - ay * cos(ky * y))*(1.0 - az * cos(kz * z));;
}
}
}
} // 计算卷积
void diffusion(REAL *f1, REAL *f2, int nx, int ny, int nz,
REAL ce, REAL cw, REAL cn, REAL cs, REAL ct, REAL cb, REAL cc, REAL dt, int count)
{
for (int i = ; i < count; ++i)
{
for (int z = ; z < nz; z++)
{
for (int y = ; y < ny; y++)
{
for (int x = ; x < nx; x++)
{
int c = (z * ny + y) * NX + x;
int w = (x == ) ? c : c - ;
int e = (x == NX - ) ? c : c + ;
int n = (y == ) ? c : c - NX;
int s = (y == ny - ) ? c : c + NX;
int b = (z == ) ? c : c - NX * ny;
int t = (z == nz - ) ? c : c + NX * ny;
f2[c] = cc * f1[c] + cw * f1[w] + ce * f1[e] + cs * f1[s] + cn * f1[n] + cb * f1[b] + ct * f1[t];
}
}
}
REAL *t = f1;
f1 = f2;
f2 = t;
}
return;
} static double cur_second(void) // 计时器,返回一个秒数
{
struct timeval tv;
gettimeofday(&tv, NULL);
return (double)tv.tv_sec + (double)tv.tv_usec / 1000000.0;
} REAL accuracy(const REAL *b1, REAL *b2, const int len) //计算两个数组的差距
{
REAL err = 0.0;
for (int i = ; i < len; i++)
err += (b1[i] - b2[i]) * (b1[i] - b2[i]);
return (REAL)sqrt(err / len);
} void dump_result(REAL *f, int nx, int ny, int nz, char *out_path) // 将结果写到文件中
{
FILE *out = fopen(out_path, "w");
assert(out);
fwrite(f, sizeof(REAL), nx * ny * nz, out);
fclose(out);
} int main(int argc, char *argv[])
{
int nx = NX, ny = NX, nz = NX;
REAL *f1 = (REAL *)malloc(sizeof(REAL) * NX * NX * NX);
REAL *f2 = (REAL *)malloc(sizeof(REAL) * NX * NX * NX);
REAL *f3 = (REAL *)malloc(sizeof(REAL) * NX * ny * nz);
assert(f1 != MAP_FAILED);
assert(f2 != MAP_FAILED);
assert(f3 != MAP_FAILED); REAL dx, dy, dz, kx, ky, kz;
dx = dy = dz = 1.0 / nx; // 边长 1.0
kx = ky = kz = 2.0 * M_PI;
REAL kappa = 0.1;
REAL dt = 0.1 * dx * dx / kappa;
int count = 0.1 / dt; init(f1, nx, ny, nz, kx, ky, kz, dx, dy, dz, kappa, 0.0); REAL ce, cw, cn, cs, ct, cb, cc;
ce = cw = kappa * dt / (dx * dx);
cn = cs = kappa * dt / (dy * dy);
ct = cb = kappa * dt / (dz * dz);
cc = 1.0 - (ce + cw + cn + cs + ct + cb); printf("Running diffusion kernel %d times\n", count);
fflush(stdout);
struct timeval time_b, time_e;
gettimeofday(&time_b, NULL);
diffusion(f1, f2, nx, ny, nz, ce, cw, cn, cs, ct, cb, cc, dt, count);
gettimeofday(&time_e, NULL);
//dump_result((count % 2) ? f2 : f1, nx, ny, nz, "diffusion_result.dat"); init(f3, nx, ny, nz, kx, ky, kz, dx, dy, dz, kappa, count * dt); // 对比基准结果
REAL err = accuracy((count % ) ? f2 : f1, f3, nx*ny*nz);
double elapsed_time = (time_e.tv_sec - time_b.tv_sec) + (time_e.tv_usec - time_b.tv_usec) * 1.0e-6;
REAL mflops = (nx*ny*nz)*13.0*count / elapsed_time * 1.0e-06;
double thput = (nx * ny * nz) * sizeof(REAL) * 3.0 * count / elapsed_time * 1.0e-09; printf("Elapsed time : %.3f (s)\nFLOPS : %.3f (MFlops)\n", elapsed_time, mflops);
printf("Throughput : %.3f (GB/s)\nAccuracy : %e\n", thput, err); free(f1);
free(f2);
return ;
}

■ 输出结果

Running diffusion kernel  times
Elapsed time : 177.015 (s)
FLOPS : 252.276 (MFlops)
Throughput : 0.233 (GB/s)
Accuracy : 5.068947e-06

● 计算内核加入 OpenMP

 void diffusion(REAL *restrict f1, REAL *restrict f2, int nx, int ny, int nz,
REAL ce, REAL cw, REAL cn, REAL cs, REAL ct, REAL cb, REAL cc, REAL dt, int count)// 加了 restrict
{
#pragma omp parallel // openMP 并行域
{
REAL *f1_t = f1, *f2_t = f2; // 使用局部的指针
for (int i = ; i < count; ++i)
{
#pragma omp for collapse(2) // 展开外两层循环
for (int z = ; z < nz; z++)
{
for (int y = ; y < ny; y++)
{
for (int x = ; x < nx; x++)
{
int c = (z * ny + y) * NX + x;
int w = (x == ) ? c : c - ;
int e = (x == NX - ) ? c : c + ;
int n = (y == ) ? c : c - NX;
int s = (y == ny - ) ? c : c + NX;
int b = (z == ) ? c : c - NX * ny;
int t = (z == nz - ) ? c : c + NX * ny;
f2_t[c] = cc * f1_t[c] + cw * f1_t[w] + ce * f1_t[e] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
}
}
REAL *t = f1_t;
f1_t = f2_t;
f2_t = t;
}
}
return;
}

■ 输出结果

Running diffusion kernel  times
Elapsed time : 2.936 (s)
FLOPS : 15209.439 (MFlops)
Throughput : 14.039 (GB/s)
Accuracy : 4.789139e-06

● 保证向量化

 void diffusion(REAL *restrict f1, REAL *restrict f2, int nx, int ny, int nz,
REAL ce, REAL cw, REAL cn, REAL cs, REAL ct, REAL cb, REAL cc, REAL dt, int count)
{
#pragma omp parallel
{
REAL *f1_t = f1, *f2_t = f2;
for (int i = ; i < count; ++i)
{
#pragma omp for collapse(2)
for (int z = ; z < nz; z++)
{
for (int y = ; y < ny; y++)
{
#pragma simd // 保证向量化,不考虑 f1_t 和 f2_t 之间的独立子性
for (int x = ; x < nx; x++)
{
int c = (z * ny + y) * NX + x;
int w = (x == ) ? c : c - ;
int e = (x == NX - ) ? c : c + ;
int n = (y == ) ? c : c - NX;
int s = (y == ny - ) ? c : c + NX;
int b = (z == ) ? c : c - NX * ny;
int t = (z == nz - ) ? c : c + NX * ny;
f2_t[c] = cc * f1_t[c] + cw * f1_t[w] + ce * f1_t[e] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
}
}
REAL *t = f1_t;
f1_t = f2_t;
f2_t = t;
}
}
return;
}

■ 输出结果

Running diffusion kernel  times
Elapsed time : 0.865 (s)
FLOPS : 51651.863 (MFlops)
Throughput : 47.679 (GB/s)
Accuracy : 4.427611e-06

● 手动剥离边界

 void diffusion(REAL *restrict f1, REAL *restrict f2, int nx, int ny, int nz,
REAL ce, REAL cw, REAL cn, REAL cs, REAL ct, REAL cb, REAL cc, REAL dt, int count)
{
#pragma omp parallel
{
REAL *f1_t = f1, *f2_t = f2;
for (int i = ; i < count; ++i)
{
#pragma omp for collapse(2)
for (int z = ; z < nz; z++)
{
for (int y = ; y < ny; y++)
{
int x = ; // 每行首次
int c = (z * ny + y) * NX + x; // 注意 w 方向的下标是 c
int n = (y == ) ? c : c - NX;
int s = (y == ny - ) ? c : c + NX;
int b = (z == ) ? c : c - NX * ny;
int t = (z == nz - ) ? c : c + NX * ny;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c] + ce * f1_t[c + ] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
#pragma simd
for (x = ; x < nx - ; x++) // 中间部分,注意循环要按照 OpenMP 格式书写
{
c++;
n++;
s++;
b++;
t++;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c - ] + ce * f1_t[c + ] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
c++; // 每行末次
n++; // 注意 e 方向的下标是 c
s++;
b++;
t++;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c - ] + ce * f1_t[c] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
}
REAL *t = f1_t;
f1_t = f2_t;
f2_t = t;
}
}
return;
}

■ 输出结果

Running diffusion kernel  times
Elapsed time : 0.565 (s)
FLOPS : 79071.250 (MFlops)
Throughput : 72.989 (GB/s)
Accuracy : 4.577150e-06

● 数据切片

 void diffusion(REAL *restrict f1, REAL *restrict f2, int nx, int ny, int nz,
REAL ce, REAL cw, REAL cn, REAL cs, REAL ct, REAL cb, REAL cc, REAL dt, int count)
{
#pragma omp parallel
{
REAL *f1_t = f1, *f2_t = f2;
for (int i = ; i < count; ++i)
{
#define YBF 16 // 分块大小
#pragma omp for collapse(2)
for (int yy = ; yy < ny; yy += YBF) // 在循环之外放入分块
{
for (int z = ; z < nz; z++)
{
int yyy = (yy + YBF) >= ny ? ny : (yy + YBF); // 该分块的末端
for (int y = yy; y < yyy; y++) // y 限定在分块内循环
{
int x = ;
int c = (z * ny + y) * NX + x;
int n = (y == ) ? c : c - NX;
int s = (y == ny - ) ? c : c + NX;
int b = (z == ) ? c : c - NX * ny;
int t = (z == nz - ) ? c : c + NX * ny;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c] + ce * f1_t[c + ] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
#pragma simd
for (x = ; x < nx - ; x++)
{
c++;
n++;
s++;
b++;
t++;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c - ] + ce * f1_t[c + ] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
c++;
n++;
s++;
b++;
t++;
f2_t[c] = cc * f1_t[c] + cw * f1_t[c - ] + ce * f1_t[c] + cs * f1_t[s] + cn * f1_t[n] + cb * f1_t[b] + ct * f1_t[t];
}
}
}
REAL *t = f1_t;
f1_t = f2_t;
f2_t = t;
}
}
return;
}

■ 输出结果,没有明显优化

Running diffusion kernel  times
Elapsed time : 0.594 (s)
FLOPS : 75224.680 (MFlops)
Throughput : 69.438 (GB/s)
Accuracy : 4.577150e-06

Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 2的更多相关文章

  1. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 1

    ▶ 第三章,逐步优化了一个二维卷积计算的过程 ● 基准代码 #include <stdio.h> #include <stdlib.h> #include <string ...

  2. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 4

    ▶ 第五章,几个优化 ● 代码 #include <stdio.h> #include <stdlib.h> #include <math.h> #define S ...

  3. Xeon Phi 《协处理器高性能编程指南》随书代码整理 part 3

    ▶ 第二章,几个简单的程序 ● 代码,单线程 #include <stdio.h> #include <stdlib.h> #include <string.h> ...

  4. Xeon Phi 编程备忘

    ▶ 闲鱼的 Xeon Phi 3120A 配办公室的新 Xeon 服务器,记录一下环境安装过程. ● 原本尝试搭 Ubuntu 服务器,参考[https://software.intel.com/en ...

  5. Python猫荐书系列之五:Python高性能编程

    稍微关心编程语言的使用趋势的人都知道,最近几年,国内最火的两种语言非 Python 与 Go 莫属,于是,隔三差五就会有人问:这两种语言谁更厉害/好找工作/高工资…… 对于编程语言的争论,就是猿界的生 ...

  6. 《高性能javascript》一书要点和延伸(上)

    前些天收到了HTML5中国送来的<高性能javascript>一书,便打算将其做为假期消遣,顺便也写篇文章记录下书中一些要点. 个人觉得本书很值得中低级别的前端朋友阅读,会有很多意想不到的 ...

  7. 高质量C++/C编程指南(林锐)

    推荐-高质量C++/C编程指南(林锐) 版本/状态 作者 参与者 起止日期 备注 V 0.9 草稿文件 林锐   2001-7-1至 2001-7-18 林锐起草 V 1.0 正式文件 林锐   20 ...

  8. 物联网操作系统HelloX应用编程指南

    HelloX操作系统应用编程指南 HelloX应用开发概述 可以通过三种方式,在HelloX操作系统基础上开发应用: 1.        以内部命令方式实现应用,直接编译链接到HelloX的内核she ...

  9. JDK 高性能编程之容器

    高性能编程在对不同场景下对于容器的选择有着非常苛刻的条件,这里记录下前人总结的经验,并对源码进行调试 JDK高性能编程之容器 读书笔记内容部分来源书籍深入理解JVM.互联网等 先放一个类图util,点 ...

随机推荐

  1. layui布局器网站工具

    http://layuiout.magicalcoder.com/magicaldrag-admin/drag

  2. Qml和C++开发的学生信息管理软件一

    一个月前接触到了Qml,也做过一些练习,但只能实现动画和简单的布局功能,逻辑部分和数据处理很难上手,看到许多人将C++和结合起来,Qml负责界面设计,C++实现逻辑处理,但将C++注册到 Qml中一直 ...

  3. Java语法基础学习DaySixteen(多线程)

    一.多线程的创建 1.作用 程序需要同时执行两个或多个任务时需要多线程. 程序需要实现需要等待的任务时,如用户输入.文件读写操作.网络操作.搜索等,需要多线程. 需要一些后台运行的程序时,需要多线程. ...

  4. Costura.Fody合并DLL和EXE

    1.打开Nuget包管理器 2. 输入 Install-Package Costura.Fody -Version 3.3.0 3.之后Costura.Fody会嵌入到工程中,如果没有手动添加一下 4 ...

  5. sqlx使用说明

    sqlx使用指南 参考链接: http://jmoiron.github.io/sqlx/ sqlx是一个go语言包,在内置database/sql包之上增加了很多扩展,简化数据库操作代码的书写 资源 ...

  6. MacOs 安装cordova报无权访问题解决方案

    在MacOS安装cordova后,执行cordova -v报错: Error: EACCES: permission denied, open '/Users/jianuonuo/.config/co ...

  7. 【原创】MIPS相关

    MIPS是单字长定点指令平均执行速度 Million Instructions Per Second的缩写. 路由器等嵌入式系统多采用MIPS和ARM两种指令架构,最近在研究路由器,借机总结一下基于M ...

  8. Python 事件

    from multiprocessing import Process,Event e = Event() #创建事件对象,这个对象的初识状态为False print('e的状态是:',e.is_se ...

  9. 直接借鉴的 ids拼接

    function _getIds(selectedIds, targetType){ var ids = ""; var $box = targetType == "di ...

  10. Linux 堆溢出原理分析

    堆溢出与堆的内存布局有关,要搞明白堆溢出,首先要清楚的是malloc()分配的堆内存布局是什么样子,free()操作后又变成什么样子. 解决第一个问题:通过malloc()分配的堆内存,如何布局? 上 ...