map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程

[training@localhost ~]$ cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$ hdfs dfs -put names.txt
[training@localhost ~]$ hdfs dfs -cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$

In [98]: t_names = sc.textFile("names.txt")
17/09/24 06:24:22 INFO storage.MemoryStore: Block broadcast_27 stored as values in memory (estimated size 230.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.MemoryStore: Block broadcast_27_piece0 stored as bytes in memory (estimated size 21.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.BlockManagerInfo: Added broadcast_27_piece0 in memory on localhost:33950 (size: 21.5 KB, free: 208.6 MB)
17/09/24 06:24:23 INFO spark.SparkContext: Created broadcast 27 from textFile at NativeMethodAccessorImpl.java:-2

In [99]: rows=t_names.map(lambda line: line.split(","))

In [100]: rows.take(1)

17/09/24 06:25:23 INFO mapred.FileInputFormat: Total input paths to process : 1
17/09/24 06:25:23 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Got job 15 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Final stage: ResultStage 15 (runJob at PythonRDD.scala:393)
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Submitting ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:23 INFO storage.MemoryStore: Block broadcast_28 stored as values in memory (estimated size 5.2 KB, free 2.3 MB)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_26_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 8
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_18_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO storage.MemoryStore: Block broadcast_28_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.3 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 9
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_19_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 10
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Added broadcast_28_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.SparkContext: Created broadcast 28 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Adding task set 15.0 with 1 tasks
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_20_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 11
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 15.0 (TID 15, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_21_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 12
17/09/24 06:25:24 INFO executor.Executor: Running task 0.0 in stage 15.0 (TID 15)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_22_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 13
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_23_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 14
17/09/24 06:25:24 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_24_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 15
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_25_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 16
17/09/24 06:25:24 INFO python.PythonRunner: Times: total = 78, boot = 49, init = 25, finish = 4
17/09/24 06:25:24 INFO executor.Executor: Finished task 0.0 in stage 15.0 (TID 15). 2203 bytes result sent to driver
17/09/24 06:25:24 INFO scheduler.DAGScheduler: ResultStage 15 (runJob at PythonRDD.scala:393) finished in 0.438 s
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Job 15 finished: runJob at PythonRDD.scala:393, took 1.160085 s
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 15.0 (TID 15) in 429 ms on localhost (1/1)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 15.0, whose tasks have all completed, from pool
Out[100]: [[u'Year', u'First Name', u'County', u'Sex', u'Count']]

In [101]: rows.take(2)
17/09/24 06:25:29 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Got job 16 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Final stage: ResultStage 16 (runJob at PythonRDD.scala:393)
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29 stored as values in memory (estimated size 5.2 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.BlockManagerInfo: Added broadcast_29_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:29 INFO spark.SparkContext: Created broadcast 29 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43)
17/09/24 06:25:29 INFO scheduler.TaskSchedulerImpl: Adding task set 16.0 with 1 tasks
17/09/24 06:25:29 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 16.0 (TID 16, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:29 INFO executor.Executor: Running task 0.0 in stage 16.0 (TID 16)
17/09/24 06:25:29 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:29 INFO python.PythonRunner: Times: total = 71, boot = 25, init = 45, finish = 1
17/09/24 06:25:29 INFO executor.Executor: Finished task 0.0 in stage 16.0 (TID 16). 2267 bytes result sent to driver
17/09/24 06:25:30 INFO scheduler.DAGScheduler: ResultStage 16 (runJob at PythonRDD.scala:393) finished in 0.196 s
17/09/24 06:25:30 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 16.0 (TID 16) in 202 ms on localhost (1/1)
17/09/24 06:25:30 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 16.0, whose tasks have all completed, from pool
17/09/24 06:25:30 INFO scheduler.DAGScheduler: Job 16 finished: runJob at PythonRDD.scala:393, took 0.408908 s
Out[101]:
[[u'Year', u'First Name', u'County', u'Sex', u'Count'],
[u'2012', u'DOMINIC', u'CAYUGA', u'M', u'6']]

In [102]:

来自:

https://www.supergloo.com/fieldnotes/apache-spark-transformations-python-examples/

[spark][python]Spark map 处理的更多相关文章

  1. [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子

    [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...

  2. [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:

    [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...

  3. [Spark][Python]Spark Python 索引页

    Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子

  4. [Spark][Python]Spark Join 小例子

    [training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...

  5. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  6. [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子

    [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...

  7. [Spark][Python]DataFrame中取出有限个记录的例子

    [Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...

  8. [Spark][python]以DataFrame方式打开Json文件的例子

    [Spark][python]以DataFrame方式打开Json文件的例子: [training@localhost ~]$ cat people.json{"name":&qu ...

  9. [Spark][Python]sortByKey 例子

    [Spark][Python]sortByKey 例子: [training@localhost ~]$ hdfs dfs -cat test02.txt00002 sku01000001 sku93 ...

随机推荐

  1. 反编译Apk得到Java源代码

    原文章转载自:http://hi.baidu.com/%CB%BF%D4%B5%CC%EC%CF%C2/blog/item/2284e2debafc541e495403ec.html 本人转载自:ht ...

  2. Java并发编程(一)线程定义、状态和属性

    一 .线程和进程 1. 什么是线程和进程的区别: 线程是指程序在执行过程中,能够执行程序代码的一个执行单元.在java语言中,线程有四种状态:运行 .就绪.挂起和结束. 进程是指一段正在执行的程序.而 ...

  3. Android-仿“抖音”的评论列表的UI和效果

    在design包里面 有一个 BottomSheetDialogFragment 这个Fragment,他已经帮我们处理好了手势,所以实现起来很简单.下面是代码: public class ItemL ...

  4. JS数组分组

    //1.找出数组中相同的元素 getRepeatNum(arr) { let obj = {}; for (let i = 0, len = arr.length; i < len; i++) ...

  5. MySQL中MyISAM与InnoDB区别及选择

    InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和索引存放在表空间 ...

  6. centos-7 虚拟机安装图形界面

    centos-7 虚拟机安装图形界面 想到安装一个docker环境,于是拿出了以前装的虚拟机centos7,记得装完后,没进行任何配置(默认安装的是命令行界面). 配置网络 现有的虚拟机是没有办法联网 ...

  7. 阿里云搭建JAVA WEB环境(SQL Server + TomCat + 配置域名)

    假期刚刚搭完,先写个提纲,今晚写完: 1.申请一个月的免费的云服务器ECS; 2.在云服务器上安装Java开发环境+Sql Server+Tomcat; 3.购买域名并认证,绑定服务器共有IP地址; ...

  8. Matplotlib:plt.text()给图形添加数据标签

    1.数据可视化呈现的最基础图形就是:柱状图.水平条形图.折线图等等: 在python的matplotlib库中分别可用bar.barh.plot函数来构建它们,再使用xticks与yticks(设置坐 ...

  9. 2018-2019-2 网络对抗技术 20165318 Exp1 PC平台逆向破解

    实验模块 (一)直接修改程序机器指令,改变程序执行流程: (二)通过构造输入参数,造成BOF攻击,改变程序执行流: (三)注入Shellcode并执行: 实验准备 设置共享文件夹(这一步我已经在之前安 ...

  10. python设计模式之单例

    """ 单例模式 1.第一种方法 修改__new__方法 2.第二种方法 python import 就是一个单例模式 把要单例的类封装到一个py文件中 "&q ...