[spark][python]Spark map 处理
map 就是对一个RDD的各个元素都施加处理,得到一个新的RDD 的过程
[training@localhost ~]$ cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$ hdfs dfs -put names.txt
[training@localhost ~]$ hdfs dfs -cat names.txt
Year,First Name,County,Sex,Count
2012,DOMINIC,CAYUGA,M,6
2012,ADDISON,ONONDAGA,F,14
2012,ADDISON,ONONDAGA,F,14
2012,JULIA,ONONDAGA,F,15
[training@localhost ~]$
In [98]: t_names = sc.textFile("names.txt")
17/09/24 06:24:22 INFO storage.MemoryStore: Block broadcast_27 stored as values in memory (estimated size 230.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.MemoryStore: Block broadcast_27_piece0 stored as bytes in memory (estimated size 21.5 KB, free 2.3 MB)
17/09/24 06:24:23 INFO storage.BlockManagerInfo: Added broadcast_27_piece0 in memory on localhost:33950 (size: 21.5 KB, free: 208.6 MB)
17/09/24 06:24:23 INFO spark.SparkContext: Created broadcast 27 from textFile at NativeMethodAccessorImpl.java:-2
In [99]: rows=t_names.map(lambda line: line.split(","))
In [100]: rows.take(1)
17/09/24 06:25:23 INFO mapred.FileInputFormat: Total input paths to process : 1
17/09/24 06:25:23 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Got job 15 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Final stage: ResultStage 15 (runJob at PythonRDD.scala:393)
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:23 INFO scheduler.DAGScheduler: Submitting ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:23 INFO storage.MemoryStore: Block broadcast_28 stored as values in memory (estimated size 5.2 KB, free 2.3 MB)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_26_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 8
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_18_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO storage.MemoryStore: Block broadcast_28_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.3 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 9
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_19_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 10
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Added broadcast_28_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.SparkContext: Created broadcast 28 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 15 (PythonRDD[46] at RDD at PythonRDD.scala:43)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Adding task set 15.0 with 1 tasks
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_20_piece0 on localhost:33950 in memory (size: 3.7 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 11
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 15.0 (TID 15, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_21_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 12
17/09/24 06:25:24 INFO executor.Executor: Running task 0.0 in stage 15.0 (TID 15)
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_22_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 13
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_23_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 14
17/09/24 06:25:24 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_24_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 15
17/09/24 06:25:24 INFO storage.BlockManagerInfo: Removed broadcast_25_piece0 on localhost:33950 in memory (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:24 INFO spark.ContextCleaner: Cleaned accumulator 16
17/09/24 06:25:24 INFO python.PythonRunner: Times: total = 78, boot = 49, init = 25, finish = 4
17/09/24 06:25:24 INFO executor.Executor: Finished task 0.0 in stage 15.0 (TID 15). 2203 bytes result sent to driver
17/09/24 06:25:24 INFO scheduler.DAGScheduler: ResultStage 15 (runJob at PythonRDD.scala:393) finished in 0.438 s
17/09/24 06:25:24 INFO scheduler.DAGScheduler: Job 15 finished: runJob at PythonRDD.scala:393, took 1.160085 s
17/09/24 06:25:24 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 15.0 (TID 15) in 429 ms on localhost (1/1)
17/09/24 06:25:24 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 15.0, whose tasks have all completed, from pool
Out[100]: [[u'Year', u'First Name', u'County', u'Sex', u'Count']]
In [101]: rows.take(2)
17/09/24 06:25:29 INFO spark.SparkContext: Starting job: runJob at PythonRDD.scala:393
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Got job 16 (runJob at PythonRDD.scala:393) with 1 output partitions
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Final stage: ResultStage 16 (runJob at PythonRDD.scala:393)
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Parents of final stage: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Missing parents: List()
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43), which has no missing parents
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29 stored as values in memory (estimated size 5.2 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.MemoryStore: Block broadcast_29_piece0 stored as bytes in memory (estimated size 3.3 KB, free 2.2 MB)
17/09/24 06:25:29 INFO storage.BlockManagerInfo: Added broadcast_29_piece0 in memory on localhost:33950 (size: 3.3 KB, free: 208.6 MB)
17/09/24 06:25:29 INFO spark.SparkContext: Created broadcast 29 from broadcast at DAGScheduler.scala:1006
17/09/24 06:25:29 INFO scheduler.DAGScheduler: Submitting 1 missing tasks from ResultStage 16 (PythonRDD[47] at RDD at PythonRDD.scala:43)
17/09/24 06:25:29 INFO scheduler.TaskSchedulerImpl: Adding task set 16.0 with 1 tasks
17/09/24 06:25:29 INFO scheduler.TaskSetManager: Starting task 0.0 in stage 16.0 (TID 16, localhost, partition 0,PROCESS_LOCAL, 2147 bytes)
17/09/24 06:25:29 INFO executor.Executor: Running task 0.0 in stage 16.0 (TID 16)
17/09/24 06:25:29 INFO rdd.HadoopRDD: Input split: hdfs://localhost:8020/user/training/names.txt:0+136
17/09/24 06:25:29 INFO python.PythonRunner: Times: total = 71, boot = 25, init = 45, finish = 1
17/09/24 06:25:29 INFO executor.Executor: Finished task 0.0 in stage 16.0 (TID 16). 2267 bytes result sent to driver
17/09/24 06:25:30 INFO scheduler.DAGScheduler: ResultStage 16 (runJob at PythonRDD.scala:393) finished in 0.196 s
17/09/24 06:25:30 INFO scheduler.TaskSetManager: Finished task 0.0 in stage 16.0 (TID 16) in 202 ms on localhost (1/1)
17/09/24 06:25:30 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 16.0, whose tasks have all completed, from pool
17/09/24 06:25:30 INFO scheduler.DAGScheduler: Job 16 finished: runJob at PythonRDD.scala:393, took 0.408908 s
Out[101]:
[[u'Year', u'First Name', u'County', u'Sex', u'Count'],
[u'2012', u'DOMINIC', u'CAYUGA', u'M', u'6']]
In [102]:
来自:
https://www.supergloo.com/fieldnotes/apache-spark-transformations-python-examples/
[spark][python]Spark map 处理的更多相关文章
- [Spark][Python]spark 从 avro 文件获取 Dataframe 的例子
[Spark][Python]spark 从 avro 文件获取 Dataframe 的例子 从如下地址获取文件: https://github.com/databricks/spark-avro/r ...
- [Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子:
[Spark][Python]Spark 访问 mysql , 生成 dataframe 的例子: mydf001=sqlContext.read.format("jdbc").o ...
- [Spark][Python]Spark Python 索引页
Spark Python 索引页 为了查找方便,建立此页 === RDD 基本操作: [Spark][Python]groupByKey例子
- [Spark][Python]Spark Join 小例子
[training@localhost ~]$ hdfs dfs -cat people.json {"name":"Alice","pcode&qu ...
- 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...
- [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...
- [Spark][Python]DataFrame中取出有限个记录的例子
[Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json(&q ...
- [Spark][python]以DataFrame方式打开Json文件的例子
[Spark][python]以DataFrame方式打开Json文件的例子: [training@localhost ~]$ cat people.json{"name":&qu ...
- [Spark][Python]sortByKey 例子
[Spark][Python]sortByKey 例子: [training@localhost ~]$ hdfs dfs -cat test02.txt00002 sku01000001 sku93 ...
随机推荐
- java中传值方式的个人理解
前言 这几天在整理java基础知识方面的内容,对于值传递还不是特别理解,于是查阅了一些资料和网上相关博客,自己进行了归纳总结,最后将其整理成了一篇博客. 值传递 值传递是指在调用函数时将实际参数复制一 ...
- 【JS单元测试】Qunit 和 jsCoverage使用方法
近日在网上浏览过很多有关js单元测试相关的文档,工具,但是,针对Qunit 和 jsCoverage使用方法,缺少详细说明,对于初入前端的人来说,很难明白其中的意思,特此整理这篇文章,希望 ...
- linux网关设置
1.linux中eth0为外网ip.外网网关.外网DNS设置,eth1为内网ip”172.22.0.0/16“不设置网关.DNS. 2.启动linux内核中的IP转发功能 执行vim命令编辑sysct ...
- Beta冲刺! Day5 - 砍柴
Beta冲刺! Day5 - 砍柴 今日已完成 晨瑶:陪全队肝到最后一刻 昭锡:更改了主页UI 永盛:剩余的接口改动和新增 立强:文章增加缩略图预览,收藏功能第三方编辑器整合. 炜鸿:继续完成站内信功 ...
- Wampserver虚拟机配置记录
原文地址:http://blog.csdn.net/clj9017/article/details/12705725 第一步 在http.conf 文件里面找到 ,开启 Virtual hosts # ...
- easyui的datebox控件如何只要年月不要日谢谢知道的说一下
例子2015-01 格式easyui-datebox 加上 data-options="formatter:myformatter,parser:myparser"function ...
- python第四十八课——类函数和对象函数
5.类函数和对象函数 类函数:在定义函数的上面一行书写@classmethod,特点:没有self 有cls 对象函数:定义在class中的普通的def函数 演示类函数和对象函数的定义使用: 总结: ...
- Spring Boot application starters
https://docs.spring.io/spring-boot/docs/2.1.0.RELEASE/reference/htmlsingle/#using-boot-dependency-ma ...
- UVA11988-Broken Keyboard(数组模拟链表)
Problem UVA11988-Broken Keyboard Accept: 5642 Submit: 34937 Time Limit: 1000 mSec Problem Descripti ...
- Usaco 2019 Jan Platinum
Usaco 2019 Jan Platinum 要不是昨天老师给我们考了这套题,我都不知道usaco还有铂金这么一级. 插播一则新闻:杨神坚持认为铂金比黄金简单,原因竟是:铜 汞 银 铂 金(金属活动 ...